• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Waveform controlled gas metal arc welding of corrosion resistant alloys without back purging

McNicol, Jeremy M. 21 July 2022 (has links)
No description available.
2

Réalisation de pièces aéronautiques de grandes dimensions par fabrication additive WAAM / Manufacturing of large scale components for aircraft industry with WAAM process

Querard, Vincent 10 January 2019 (has links)
Dans le domaine de la fabrication additive plusieurs technologies cohabitent et présentent des maturités et des applications différentes : le lit de poudre, la projection de poudre et le dépôt de fil pour ne citer que les principales. Nous avons étudié, dans le cadre de cette thèse, la réalisation de pièces de grandes dimensions du domaine aéronautique en alliage d’aluminium, par technologie WAAM (Wire Arc Additive Manufacturing) robotisée. Cette technologie repose sur l’utilisation un générateur de soudure à l'arc, d’un système de protection gazeuse et d’un système d'alimentation en métal d'apport sous forme de fil. Pour répondre à cette problématique, plusieurs voies de recherche ont été investiguées. La première traitait principalement de la génération de trajectoires : Plusieurs expérimentations ont permis de montrer l’intérêt et l’importance de la génération de trajectoires et notamment la maitrise de l’orientation outil pour la fabrication additive de pièces complexes en étudiant le respect de la géométrie souhaitée. La seconde concernait l’étude de la santé matière des pièces fabriquées. Des observations au niveau de la microstructure, mais aussi des caractéristiques mécaniques ont permis de mettre en évidence l’influence des paramètres opératoires sur la qualité de la matière déposée. Enfin, la réalisation de pièces fonctionnelles dans le cadre d’un projet financé par la DGA/DGAC et dont les partenaires étaient : STELIA, CONSTELLIUM, CT INGENIERIE et l’Ecole Centrale de Nantes, a permis de mettre en avant l’intérêt du procédé pour la fabrication de pièces aéronautiques. Un élément de structure aéronautique composé de raidisseurs a été fabriqué avec le procédé WAAM sur un substrat double courbure en alliage aluminium. Les difficultés accrues de réalisation ont pu être levées par l'emploi de la méthodologie développée dans le cadre de la thèse. / In the field of additive manufacturing (AM), several processes are present and have different applications and levels of development: the main technologies are powder-bed based AM, powder projection and Wire Additive Manufacturing (WAM). We have studied, in this PhD work, the manufacturing of large scale components in aluminum alloy for aircraft industry with Wire Arc Additive Manufacturing (WAAM). This technology is based on a welding generator, a shielding gas protection and a feedstock (wire in this case). To solve this issue, several ways of research were investigated. The first one dealt with toolpath generation: several experiments have highlighted the importance of tool path generation and the tool orientation to manufacture complex parts and improve the part accuracy. The second one was about the validation of the material quality after deposit. Microstructural observations and mechanical tests have demonstrated the effect of process parameters on the deposit quality. Finally, in the context of a DGA/DGAC funded research project, whose partners were STELIA, CT INGENIERIE, CONSTELLIUM and l’Ecole Centrale de Nantes, the manufacturing of functional part in aluminum alloy has shown the interest of the process for aircraft industry. A structural component based on a double curvature geometry has been manufactured with WAAM. The methodologies developed in this PhD work have enabled us to solve the issues to manufacture that type of component.
3

Fatigue and microstructural study of a 316L austenitic stainless steel marine component produced by Wire Arc Additive Manufacturing (WAAM)

Bremler, Oskar January 2022 (has links)
In this study, the fatigue- and fracture properties and microstructure of a marine component of austenitic stainless steel 316L manufactured with the novel method Wire Arc Additive Manufacturing were investigated and compared with data from literature. The purpose was to find a critical flaw size in the material related to its fatigue life. It was done by studying the microstructure and interpreting fatigue- and mechanical data for the marine component in empirical models related to the fatigue- and fracture properties. Fracture properties were approximated to estimate fatigue life and critical flaw size. Fatigue limit and fatigue threshold were based on hardness test data, fracture toughness, and FADs on Charpy-V impact test data. The material manufactured with Wire Arc Additive Manufacturing had superior fatigue properties than cast and rolled equivalents and performed better in the fatigue test than recommendations for austenitic stainless steel in a seawater environment from the British Standard 7910:2019. Due to the conservative model's fatigue limit and fatigue threshold, the results are conservative. The reason for that could be the crack closure properties of the material. The results for fracture toughness are lower than the literature data. This is most likely due to conservative models based on Charpy-V impact test data. The most important properties of the fatigue life are the fatigue limit and the fatigue threshold due to their relationship with crack growth. Testing the lifetime of the component in seawater is complex and time-consuming due to the corrosion and the need for low test frequency.
4

Numerische Auslegung des Mehrlagenschweißens als additives Fertigungsverfahren / Numerical design of multi layer welding as additive manufacturing process

Graf, Marcel, Härtel, Sebastian, Hälsig, André 06 June 2017 (has links) (PDF)
Die additiven Fertigungstechnologien erleben seit einigen Jahren einen enormen Zuspruch bei der Herstellung von Einzelteilserien mit komplexen, endkonturnahen Geometrien und der Verarbeitung von Sonder- oder hybriden Werkstoffen. Prinzipiell lassen sich die Verfahren gemäß VDI- Richtlinie 3404 in drahtbasierte und pulverbasierte unterteilen. Eine weitere Unterteilung erfolgt hinsichtlich der Ausschmelztechnologie. Allen Verfahren ist gleich, dass schichtweise der Grundwerkstoff an den Stellen aufgetragen wird, wo er gemäß Endkontur benötigt wird. Damit ist ein immer wiederkehrender Wärmeeintrag verbunden, der somit Einfluss auf die Mikrostruktur der Bauteile und gleichzeitig auch auf die mechanischen Endeigenschaften ausübt. Die so erzeugten Komponenten sollten wenig Verzug oder Eigenspannungen als auch keine Porosität aufweisen, um die Gebrauchseigenschaften nicht negativ zu beeinflussen. Das Ziel ist es mittlerweile, diese verschiedenen Technologien numerisch abzubilden, um die Bauteileigenschaften vorherzusagen und ggf. Optimierungspotenziale zu eruieren. Der untersuchte Prozess ist das drahtbasierte Mehrlagenschweißen mittels des Metallschutzgasschweißens, bei dem neben der Simulation auch die Validierung im Fokus hinsichtlich Geometrie und Gefügeausbildung in den Schweißlagen stand. Diesbezüglich wurden im vorliegenden Fall zum einen alle, für die numerische Simulation notwendigen Materialparameter (mechanische und thermophysikalische Kenngrößen) des Schweißzusatzwerkstoffes G4Si1 bestimmt und in ein kommerzielles FEM-Programm (MSC Marc Mentat) implementiert. Zum anderen erfolgt zukünftig die wissenschaftliche Analyse der Verbesserung der Bauteileigenschaft, in dem die Schweißnaht unter Ausnutzung der Schweißhitze warmumgeformt wird. Erste Ergebnisse numerischer Simulationsergebnisse zeigen positive Effekte. Diese zeigen mikrostrukturelle Veränderungen (Kornfeinung durch Rekristallisation) und führten letztendlich zur Steigerung der mechanischen Eigenschaften. Der Vorteil dieser Verfahrenskombination ist außerdem die Kompensation des Verzuges durch die gezielte Umformung und einem gleichzeitigen „Richten“.
5

Robotic P-GMA DED AM of Aluminum for Large Structures

Canaday, Jack H. January 2021 (has links)
No description available.
6

Numerische Auslegung des Mehrlagenschweißens als additives Fertigungsverfahren

Graf, Marcel, Härtel, Sebastian, Hälsig, André 06 June 2017 (has links)
Die additiven Fertigungstechnologien erleben seit einigen Jahren einen enormen Zuspruch bei der Herstellung von Einzelteilserien mit komplexen, endkonturnahen Geometrien und der Verarbeitung von Sonder- oder hybriden Werkstoffen. Prinzipiell lassen sich die Verfahren gemäß VDI- Richtlinie 3404 in drahtbasierte und pulverbasierte unterteilen. Eine weitere Unterteilung erfolgt hinsichtlich der Ausschmelztechnologie. Allen Verfahren ist gleich, dass schichtweise der Grundwerkstoff an den Stellen aufgetragen wird, wo er gemäß Endkontur benötigt wird. Damit ist ein immer wiederkehrender Wärmeeintrag verbunden, der somit Einfluss auf die Mikrostruktur der Bauteile und gleichzeitig auch auf die mechanischen Endeigenschaften ausübt. Die so erzeugten Komponenten sollten wenig Verzug oder Eigenspannungen als auch keine Porosität aufweisen, um die Gebrauchseigenschaften nicht negativ zu beeinflussen. Das Ziel ist es mittlerweile, diese verschiedenen Technologien numerisch abzubilden, um die Bauteileigenschaften vorherzusagen und ggf. Optimierungspotenziale zu eruieren. Der untersuchte Prozess ist das drahtbasierte Mehrlagenschweißen mittels des Metallschutzgasschweißens, bei dem neben der Simulation auch die Validierung im Fokus hinsichtlich Geometrie und Gefügeausbildung in den Schweißlagen stand. Diesbezüglich wurden im vorliegenden Fall zum einen alle, für die numerische Simulation notwendigen Materialparameter (mechanische und thermophysikalische Kenngrößen) des Schweißzusatzwerkstoffes G4Si1 bestimmt und in ein kommerzielles FEM-Programm (MSC Marc Mentat) implementiert. Zum anderen erfolgt zukünftig die wissenschaftliche Analyse der Verbesserung der Bauteileigenschaft, in dem die Schweißnaht unter Ausnutzung der Schweißhitze warmumgeformt wird. Erste Ergebnisse numerischer Simulationsergebnisse zeigen positive Effekte. Diese zeigen mikrostrukturelle Veränderungen (Kornfeinung durch Rekristallisation) und führten letztendlich zur Steigerung der mechanischen Eigenschaften. Der Vorteil dieser Verfahrenskombination ist außerdem die Kompensation des Verzuges durch die gezielte Umformung und einem gleichzeitigen „Richten“.
7

Hardware-in-the-loop based-real-time simulations in robotic additive manufacturing

Singh, Gurtej, Hajian Foroushany, Ali January 2022 (has links)
Hardware-in-the-loop (HiL) is a concept for testing physical equipment by connecting itto a mathematical representation (model) of the physical process. HiL-testing reduces thecost and saves time before testing the physical equipment (hardware) on the real (physical)process. The physical process chosen for this study is wire+arc additive manufacturing(WAAM), an advanced additive manufacturing (AM) technology that deposits metalbased material layer-by-layer. In this study, simulations of the robot path are carried outwhile the physical robot performs a physical process (additive manufacturing). In robotadditive manufacturing, the desired CAD model is currently sliced down into layers usingslicer software, and the layers are then translated into a path. The robot then moves alongthe path of these pre-defined layers to produce a three-dimensional structure. The heightof the produced structures and desired CAD models have deviations because of processinstabilities and temperature variations among other factors. The robot path should beupdated every time a layer is printed to compensate for the height differences. This isachieved by parametrizing the CAD model, i.e., the CAD model of the structure to beprinted is replaced by a mathematical equation (model). In this study, the mathematicalmodel is updated for each layer in real-time with feedback data from sensors that monitorthe additive manufacturing process. The concept of updating a mathematical model andexecuting it in real-time is called real-time simulation (RTS). In this study, a HiL-basedreal-time simulation setup has been developed, which predicts the required printing layerheight and the number of layers (based upon the latest feedback data from the monitoringsensors), and the required height of the structure. By combining hardware and software,a cyber-physical system has been created, enabling the transition from automation toautonomous robotics and contributing to Industry 4.0.
8

Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products

Graf, Marcel, Hälsig, Andre, Höfer, Kevin, Awiszus, Birgit, Mayr, Peter 13 February 2019 (has links)
Additive manufacturing processes have been investigated for some years, and are commonly used industrially in the field of plastics for small- and medium-sized series. The use of metallic deposition material has been intensively studied on the laboratory scale, but the numerical prediction is not yet state of the art. This paper examines numerical approaches for predicting temperature fields, distortions, and mechanical properties using the Finite Element (FE) software MSC Marc. For process mapping, the filler materials G4Si1 (1.5130) for steel, and AZ31 for magnesium, were first characterized in terms of thermo-physical and thermo-mechanical properties with process-relevant cast microstructure. These material parameters are necessary for a detailed thermo-mechanical coupled Finite Element Method (FEM). The focus of the investigations was on the numerical analysis of the influence of the wire feed (2.5–5.0 m/min) and the weld path orientation (unidirectional or continuous) on the temperature evolution for multi-layered walls of miscellaneous materials. For the calibration of the numerical model, the real welding experiments were carried out using the gas-metal arc-welding process—cold metal transfer (CMT) technology. A uniform wall geometry can be produced with a continuous welding path, because a more homogeneous temperature distribution results.
9

Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications

Antonysamy, Alphons Anandaraj January 2012 (has links)
Additive Manufacturing (AM) is an innovative manufacturing process which offers near-net shape fabrication of complex components, directly from CAD models, without dies or substantial machining, resulting in a reduction in lead-time, waste, and cost. For example, the buy-to-fly ratio for a titanium component machined from forged billet is typically 10-20:1 compared to 5-7:1 when manufactured by AM. However, the production rates for most AM processes are relatively slow and AM is consequently largely of interest to the aerospace, automotive and biomedical industries. In addition, the solidification conditions in AM with the Ti alloy commonly lead to undesirable coarse columnar primary β grain structures in components. The present research is focused on developing a fundamental understanding of the influence of the processing conditions on microstructure and texture evolution and their resulting effect on the mechanical properties during additive manufacturing with a Ti6Al4V alloy, using three different techniques, namely; 1) Selective laser melting (SLM) process, 2) Electron beam selective melting (EBSM) process and, 3) Wire arc additive manufacturing (WAAM) process. The most important finding in this work was that all the AM processes produced columnar β-grain structures which grow by epitaxial re-growth up through each melted layer. By thermal modelling using TS4D (Thermal Simulation in 4 Dimensions), it has been shown that the melt pool size increased and the cooling rate decreased from SLM to EBSM and to the WAAM process. The prior β grain size also increased with melt pool size from a finer size in the SLM to a moderate size in EBSM and to huge grains in WAAM that can be seen by eye. However, despite the large difference in power density between the processes, they all had similar G/R (thermal gradient/growth rate) ratios, which were predicted to lie in the columnar growth region in the solidification diagram. The EBSM process showed a pronounced local heterogeneity in the microstructure in local transition areas, when there was a change in geometry; for e.g. change in wall thickness, thin to thick capping section, cross-over’s, V-transitions, etc. By reconstruction of the high temperature β microstructure, it has been shown that all the AM platforms showed primary columnar β grains with a <001>β.

Page generated in 0.1455 seconds