• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modelling and metallurgical characterization of Cr-Mo steels processed by directed energy deposition

Cooke, Shaun 09 July 2021 (has links)
Additive manufacturing (AM) provides unique opportunities to push the boundaries of material properties and free form fabrication. However with this novel manufacturing technique a number of defects not commonly found in conventional processes such as machining or casting can arise. Both experimental and numerical studies can help better understand the printed material on a more fundamental level in order to optimize the process and mitigate these defects. Electron microscopy can provide essential information about the as-built microstructure and characteristic defects while numerical modelling can help determine a correlation between process parameters and the resulting properties. First, an initial investigation of directed energy deposition (DED) processed 4140 steel was conducted using various microscopy methods to better understand the defects and microstructure of the printed alloy. A martensite dominate microstructure within a bainitic matrix with increasing degrees of tempering further down the build was revealed. Additional sample preparation was conducted with a focused ion beam and analyzed with the transmission electron microscope to investigate features such as grain boundaries, mechanical twins and interplanar spacing. This interplanar spacing was measured for a number of different diffraction images and compared with the theoretical values. The deviation between the measured and theoretical values can be attributed to defects such as residual stress which causes lattice strain and consequently a smaller or larger spacing between atomic planes. Lastly, diffraction images were characterized and compared with the literature to determine the Miller indices and the specific zone axis orientations. A thermo-mechanical-metallurgical finite element model for 42CrMo4 steel was then developed in ABAQUS to identify the correlation between processing parameters and resulting properties by predicting the temperature history, and resulting residual stresses and metallurgical phase fractions for the DED process. A pre-processing framework was implemented in order to allow the modelling of complex geometries and laser trajectories while experiments were conducted to validate the fidelity of the model. Four separate cases were fabricated with varying processing parameters and geometries. In addition to in-situ temperature measurements, post-build residual stress and substrate distortion data was also collected. Furthermore, metallurgical analysis was performed for each case and compared with the simulated phase fractions. The accuracy of the distortion profile increased with increasing dwell time while the accuracy in predicting the metallurgical phase fractions and residual stresses demonstrated the opposite trend. / Graduate / 2022-07-05
2

Directed energy deposition of tool steel/copper alloy multi-material structures

Zhao, Zhao 25 July 2023 (has links)
Multi-material structures (MMSs) are attractive due to their unique advantages in achieving tailored properties at different locations in a single part. Producing such structures by additive manufacturing has been gaining more and more attention because of the beneficial characteristics of additive manufacturing processes such as its ability in building complex geometries, shortening producing chains, and most importantly, easily integrating with multi-material feeding systems. This PhD thesis investigates the potential of MMSs fabricated by directed energy deposition (DED) using tool steel and copper alloy. Specifically, AISI H13 hot work tool steel is deposited on copper-beryllium alloy (CuBe) substrate using three deposition strategies: directly depositing H13 on CuBe (H13/CuBe), SS316L buffer (H13/SS316L/CuBe), and commercially pure nickel buffer (H13/Ni/CuBe), aiming to minimize cracking issues. The morphology of single-track, single-layer, and multi-layer specimens is analyzed. The microstructure of deposited specimens is also investigated, along with its mechanical and thermal properties, such as microhardness, wear resistance, load-bearing capability (LBC), and thermal conductivity. The results show that directly depositing H13 on CuBe cannot avoid cracking in the H13 layers while preheating the CuBe substrate at 150℃ and 250℃ reduces the cracking tendency but damages the strength of the CuBe substrate due to over-aging while introducing difficulty to manage processing procedure. Using SS316L buffer can suppress the crack extension in H13 cladding due to a barrier mechanism, i.e., its ability to reduce the Cu penetration into H13 layers. However, SS316L itself is prone to cracking when directly deposited on the CuBe substrate as a buffer layer. Through analysis of cracking morphology, parameter effects, and element distribution, it was possible to identify solidification cracking as the primary cracking mechanism in all specimens. Two metallurgical factors, solidification temperature range and amount of terminal liquid, were found to dominate the cracking tendency. The introduction of Cu into steel can significantly extend the solidification temperature range, thereby increasing the susceptibility to cracking. However, as the Cu composition continuously increases, the cracking susceptibility decreases due to the backfilling of the terminal liquid into cracks resulting in a healing effect. The solidification paths of the Fe-Cu binary system were calculated as a function of Cu composition. Using this data, a map was generated reporting the solidification temperature range and terminal liquid amount as a function of Cu composition for the Fe-Cu binary system. Even if only to a first approximation (the effect of alloying elements in both, steel and CuBe alloy), this map can be used as a tool to estimate the cracking susceptibility of steel/copper alloy MMSs deposited by DED. The experimental results are in good agreement with thermodynamic calculations. Based on this analysis, a pure nickel buffer strategy was selected and proved to be effective in minimizing the cracking issue in H13 due to the narrow solidification temperature range of Ni-Cu and Ni-Fe binary systems induced the high solubility of Ni in Fe and Cu. By employing this strategy, crack-free specimens were produced. The high hardness of the H13 single-layer cladding, with an average value of 740 HV, provided a significant improvement in wear resistance compared to the CuBe (400 HV). However, in multi-layer specimens, a gradual decrease in microhardness of H13 cladding from the outer to the inner layers was observed due to the mixing of remelted soft buffer materials into H13 and the in-situ tempering effect in the previous deposited H13 layers. The above result, further confirms that the load-bearing capability (LBC) cannot be infinitely improved by adding more H13 layers. In general, in the low loading range (From 5 to 10 kN), the LBC of MMS specimens was higher than the CuBe due to the higher hardness of outer H13 layers. However, it became lower in the high loading range due to the presence of soft sublayer materials such as softened martensite, soft buffer layers (H316L = 260 HV or HNi = 130 HV), and the heat-affected zones in the CuBe substrate. The thermal conductivity of MMS specimens first drops rapidly to half of the original value as the cladding thickness ratio (tcladding/tCuBe) increases from 0 to around 20%. After that, the decrease becomes slower, with a further reduction of around 37% in thermal conductivity as the cladding thickness ratio increases from 20% up to 50%. Therefore, a tradeoff between mechanical and thermal properties must be considered looking for the application of these cladding systems. A proper cladding thickness ratio of around 20% is recommended to achieve reasonably high strength while still maintaining thermal conductivity at an acceptable level. Overall, these findings have important implications for the selection of appropriate materials and processing parameters to optimize the mechanical and thermal properties of tool steel/copper alloy MMSs deposited by DED.
3

Qualifizierung des Plasma-Pulver-Auftragschweißprozesses für die generative Herstellung von Bauteilen der Legierung 1.4404

Höfer, Kevin 03 March 2021 (has links)
Die generative Fertigung stellt eine Schlüsseltechnologie der Zukunft für weite Teile der Wirtschaft dar. Der Prozess des Plasma-Pulver-Auftragschweißens soll eine Lücke im bestehenden Portfolio an generativen Prozessen schließen. Zunächst wurde der klassische Beschichtungsprozess an die Erfordernisse der generativen Fertigung angepasst. Im Ergebnis konnten Bauteile, welche aus bis zu vier verschiedenen Materialen bestehen können, prozesssicher generiert werden. Die anschließende Betrachtung des Einflusses der Systemparameter auf das Bauteil ergab, dass die Haupteinflussgrößen auf die Bauteilgeometrie die Schweißstromstärke, die Schweißgeschwindigkeit, der Pulvermassestrom sowie die Plasmagasmenge sind. Die Bauteildichte sowie der Pulverausnutzungsgrad zeigen keine signifikanten Änderungen innerhalb des hier betrachteten Bereiches. Im Mittel konnte eine relative Bauteildichte von 98,7 % und ein Materialausnutzungsgrad von 77 % bestimmt werden. In Summe ist der Prozess durch eine stabile Auftragscharakteristik mit mindestens vergleichbaren Eigenschaften zu bestehenden Systemen zu bewerten und sehr gut als generativer Prozess, insbesondere für die Herstellung von mehrkomponentigen Bauteilen, geeignet. / Additive manufacturing is one of the key technologies of the future for large parts of the economy. The process of plasma powder deposition welding is intended to close a gap in the existing portfolio of generative processes. First, the classical cladding process was adapted to the requirements of additive manufacturing. As a result, components, which can consist of up to four different materials, could be reliably generated. The subsequent consideration of the influence of the system parameters on the component showed that the main influencing variables on the part geometry are the welding current, the welding speed, the powder flow rate and the plasma gas volume. The component density as well as the powder utilization rate show no significant changes within the range considered here. On average, a relative component density of 98.7 % and a material utilization rate of 77 % could be determined. In sum, the process can be characterized by a stable application characteristic with at least comparable properties to existing systems and is very well suitable as an additive manufacturing process, especially for the production of multi material components.
4

Towards multi-sensor monitoringand control of Directed Energy Deposition using a Laser Beam

Kisielewicz, Agnieszka January 2023 (has links)
Under senare år har omfattande insatser gjorts för att främja mer hållbara flygtransporter i Europa. De konventionella tillverkningsmetoderna som används inom flyg- och rymdindustrin kräver betydande mängder råmaterial, vars utvinning, bearbetning och användning har negativa miljöeffekter. Därför finns det ett starkt incitament att utveckla nya, mer material-effektiva tillverkningsmetoder. Additiv tillverkning (AM), även känd som 3D-printining, har fördelen att direkt komma nära den slutliga formen på strukturer genom att lägga till material endast där det behövs, något som minimerar spill och förbättrar materialanvändningen. Dock utgör införandet av AM komponenter i säkerhetskritiska flyg- och rymdtillämpningar en betydande utmaning på grund av komplexiteten hos processerna. Denna komplexitet kan leda till tillverkningsvariationer som i sin tur kan resultera i defekter i de tillverkade strukturerna. Därför är framsteg inom automation genom utvecklingen av lösningar för övervakning och styrning under processens gång ett nödvändigt steg för att uppnå tillräcklig pålitlighet och repeterbarhet. Denna avhandling presenterar en utveckling av multisensorövervakning och styrning av Directed Energy Deposition (DED) med en laservärmekälla (LB). DED-LB är en avancerad teknik som möjliggör tillverkning av storskaliga metallkomponenter nära den slutliga formen. I detta arbete har lösningar undersökts för övervakning av DED-LB med tillsatspulver och tråd. För fallet med tillsatstråd kan denna kompletteras med resistiv förvärmning (så kallad hotwire), vilket ger möjlighet att ytterligare finjustera värmetillförseln och förbättra smältprocessen. För övervakningsändamål undersöktes tre olika in-situtekniker för processens stabilitet och varians. Maskinseende och elektriska givare användes för DED-LB med tillsatstråd (DED-LB/w), medan optisk spektroskopi användes för övervakning både av processen med tillsatspulver (DEDLB/p) samt med tråd. Ett multisensorsystem baserat på de tre teknologierna testades för DED-LB/w. Det kamerabaserade systemet gav tydliga indikationer på avvikelser från nominella processförhållanden. Spännings-och strömgivarnas signaler korrelerade med förändringar i processparametrar och återspeglade tydligt metallöverföringen. Spektrometersystemet indikerade förändringar relaterade till värmeöverföringen. Dessutom möjliggjorde analysen av erhållna spektra en detektering av förluster av viktiga legeringselement under DED-LB/p. Slutsatsen från resultaten understryker behovet av multisensorövervakning, eftersom det inte bara möjliggör detektering och skattning av processförändringar utan även en bättre förståelse av deras grundorsaker. Den presenterade ansatsen är ett viktigt bidrag i utvecklingen av ett framtida robust och feltolerant automatiskt styrsystem. / In recent years, an extensive effort has been made to leap European aviation towards more sustainable transportation. Conventional manufacturing methods used in aerospace industry require significant amounts of raw materials, whose extraction, processing, and utilization have adverse environmental impacts. Thus, there is a strong motivation to develop novel, more material efficient fabrication methods. Additive Manufacturing (AM), also known as 3D-printing, offers the advantage of manufacturing near-net-shape structures by adding material only where it is needed, minimizing waste, and improving material efficiency. However, introducing AM fabricated structures as components in safety-critical aerospace systems poses a significant challenge due to the inherent complexity of AM processes. This complexity can result in variations that may lead to defects or inconsistencies in the fabricated structures. Thus, increasing automation by developing in-process monitoring, and control solutions is the vital step to reach the necessary reliability and repeatability. This thesis presents development towards multi-sensor monitoring and control of Directed Energy Deposition (DED) using a Laser Beam (LB). DED-LB is an advanced technology that allows to manufacture large-scale, near-net-shape metallic parts. In this work, in-process monitoring solutions for DED-LB with feedstock powder and wire were investigated. The set-up of the latter was complemented by resistive pre-heating of the feedstock wire (hot-wire) which provided means of fine-tuning the heat input and improving metal fusion. Formonitoring purposes, three different in-situ techniques were investigated to monitor process stability and variability. Machine vision and electrical sensing were utilized during DED-LB with feedstock wire (DED-LB/w) depositions,while optical emission spectroscopy was used for monitoring processes with feedstock powder (DED-LB/p) as well as wire. A multi-sensorsystem based on the three sensing technologies was tested during DED-LB/w depositions. The vision system gave clear indications of variations from nominal conditions. Voltage and current sensors indications correlated to changes in process parameters and reflected well the metal transfer (liquid bridge) condition.The spectrometer system indicated well changes related to heat input. In addition, analysis of obtained spectra allowed to detect losses of vital alloying element during DED-LB/p. The main conclusion from the results underlines the need for simultaneous multi-sensor monitoring as it allows not only to detect and estimate process changes but also to better interpret their root causes. Such setup will positively enable a future robust, fault tolerant control system. / <p>Paper 3 is under acception but included in this thesis with CC BY-license.</p>
5

In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Mazumder, Sangram 05 1900 (has links)
Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation in thermokinetic parameters in laser directed energy deposited CoCrMo biomedical alloy. The influence of such a unique microstructural evolution in laser directed energy deposited CoCrMo on electrochemical response in physiological media was elucidated and compared with a conventionally manufactured, commercially available CoCrMo component. Furthermore, while investigation of the electrochemical response, such a microstructural evolution in laser directed energy deposited CoCrMo led to in-situ surface modification of the built components in physiological media via selective, non-uniform electrochemical etching. Such in-situ surface modification resulted in enhanced biocompatibility in terms of mammalian cell growth, cell-substrate adhesion, blood compatibility, and antibacterial properties indicating improved osteointegration, compared to a conventionally manufactured, commercially available CoCrMo component.
6

Assessment of the ballistic performance of compositional and mesostructural functionally graded materials produced by additive manufacturing

Daugherty, Timothy J. 06 August 2020 (has links)
No description available.
7

Laser-Directed Energy Deposition : Influence of Process Parameters and Heat-Treatments

Sreekanth, Suhas January 2020 (has links)
Laser-Directed Energy Deposition (L-DED), an Additive Manufacturing (AM) processused for the fabrication of parts in a layer-wise approach has displayed an immense potential over the last decade. The aerospace industry stands as the primary beneficiary due to the L-DED process capability to build near-net-shape components with minimal tooling and thereby producing minimum wastage because of reduced machining. The widespread use of Alloy 718 in the aero-engine application has prompted huge research interest in the development of L-DED processing of this superalloy. AM processes are hindered by low build rates and high cycle times which directly affects the process costs. To overcome these issues, the present work focusses on obtaining high deposition rates through a high material feed. Studying the influence of process parameters during the L-DED process is of prime importance as they determine the performance of in-service structures. In the present work, process parameters such as laser power, scanning speed, feed rate and stand-offdistances are varied and their influence on geometry and microstructure of Alloy 718 single-track deposits are analyzed. The geometry of deposits is measured in terms of height, width and depth; and the powder capture efficiency is determined by measuring areas of deposition and dilution. The microstructure of the deposits shows a column ardendritic structure in the middle and bottom region of the deposits and equiaxed grains in the top region. Nb-rich segregation involving laves and NbC phases, typical of Alloy718 is found in the interdendritic regions and grain boundaries. The segregation increases along the height of the deposit with the bottom region having the least and the top region showing the highest concentration of Nb-rich phases due to the variation in cooling rates. A high laser power (1600 W – 2000 W) and a high scanning speed (1100 mm/min) are found to be the preferable processing conditions for minimizing segregation. Another approach to minimize segregation is by performing post-build heat treatments. The solution treatment (954 °C/1 hr) and double aging (718 °C/8 hr + 621 °C/ 8 hr) standardized for the wrought form of Alloy 718 is applied to as-built deposits which showed a reduction in segregation due to the dissolution of Nb-rich phases. Upon solution treatment, this reduction is accompanied by precipitation of the delta phase, found predominantly in top and bottom regions and sparsely in the middle region of the deposit.
8

In and Ex-Situ Process Development in Laser-Based Additive Manufacturing

Juhasz, Michael J. 18 May 2020 (has links)
No description available.
9

MECHANICAL CHARACTERIZATION OF Ti-6AL-4V REPAIRED BY DIRECTED ENERGY DEPOSITION IN COMPARISON WITH THE CONVENTIONAL Ti-6AL-4V

Shrestha, Sulochana 29 April 2021 (has links)
No description available.
10

Process parameter optimisation for Waspaloy using Laser-Directed Energy Deposition with Powder

Lövhall, Johannes January 2024 (has links)
Material utilisation is of importance in the manufacturing industry formaking the most of each material, minimising waste and increasing cost-effectiveness. In this thesis, samples of Waspaloy built with the method of L-DED-P has been analysed in order to investigate how process pa-rameters influence the build quality and geometrical accuracy in as-builtobjects. The samples analysed was built in single rows of one, three,five and fifteen layers. A build process was used in which the sampleswere built with individual combinations of the process parameters laserpower, scanning speed, and powder flow. Each combination of processparameters was used to build one track for each layer height.Analysis included defect analysis with light optical microscopy, andpost-processing with ImageJ for automatic identification, quantification,and collection of measurements. A qualitative analysis was performed andthe sample properties and characteristics was described in terms of theamount of defects, including a descriptive assessment of defect severity.Etched samples revealed a columnar grain structure in samples, which was apparent in builds with at least three layers.The results presented show a difference in build height, quantity andsize of pores, and the presence or absence of other defects such as lack of fusion. Sample 3 which was built with high laser power, slow scan-ning speed, and high powder feed show promising results with one ofthe highest build rates of all samples, combined with a low normalisedpore distribution. The sample experiences partial hardening, with hard-ness values reaching 320 HV, but still promisingly show no sign of crackformation.It is concluded that powder feed relates primarily to the build rateof the samples, and the scanning speed together with the laser power influence the quality of the build, where high laser power and low scanningspeed tends to form well behaving samples with few defects, whilst other combinations increase the risk of defects.

Page generated in 0.1257 seconds