461 |
Contribution à la conception et l'optimisation des systèmes de transport et de productionKorbaa, Ouajdi Gentina, Jean-Claude. January 2003 (has links) (PDF)
Habilitation à diriger des recherches : Sciences physiques : Lille 1 : 2003. / Synthèse de travaux. N° d'ordre (Lille 1) : 400. Curriculum vitae. Bibliogr. p. 97-100. Liste des publications.
|
462 |
Ilots quantiques et cristaux photoniques planaires pour un microlaser faible seuil à 1.5 umMonat, Christelle Viktorovitch, Pierre. January 2003 (has links) (PDF)
Thèse doctorat : Sciences. Dispositifs de l'électronique intégrée : Ecole Centrale de Lyon : 2003. / Titre provenant de l'écran-titre. 215 réf.
|
463 |
Contrôle par le produit des systèmes d'exécution de la production : apport des techniques de synthèseGouyon, David Morel, Gérard January 2004 (has links) (PDF)
Thèse doctorat : Automatique, Traitement du signal, Génie Informatique : Nancy 1 : 2004. / Titre provenant de l'écran-titre.
|
464 |
Design and test of lead-zirconate-titanate flexural plate wave based actuatorsAkella, Sriram 01 June 2005 (has links)
Current MEMS development is driven by the need to develop various 'Miniaturized Total Chemical Analysis Systems ([mu]TAS), biological and chemical sensing, drug delivery, molecular separation, microfiltration, amplification, and sequencing systems. In this work, the use of flexural plate wave devices as an actuator has been investigated.This research was done with the aim of developing a platform to build FPW devices for use in System-On-Chip applications. It is well known that acoustic forces generated by a flexural plate wave (FPW) device can cause fluid motion, by the principle of acoustic streaming. Also the proven ability of FPW devices to cause mixing, filtration and to work as a chemical-biological sensor can be used towards building a micromachined [mu]TAS. The effects of the IDT finger width, spacing, aperture, membrane thickness, and driving conditions on the device performance was studied to understand the impact of IDT design on device performance.
|
465 |
Consumable Process Development for Chemical Mechanical Planarization of Bit Patterned Media for Magnetic Storage FabricationBonivel, Joseph T., Jr. 25 October 2010 (has links)
As the superparamagnetic limit is reached, the magnetic storage industry looks to circumvent the barrier by implementing patterned media (PM) as a viable means to store and access data. Chemical mechanical polishing (CMP) is a semiconductor fabrication technique used to planarize surfaces and is investigated as a method to ensure that the PM is polished to surface roughness parameters that allow the magnetic read/write head to move seamlessly across the PM. Results from this research have implications in feasibility studies of utilizing CMP as the main planarization technique for PM fabrication. Benchmark data on the output parameters of the CMP process, for bit patterned media (BPM), based on the machine process parameters, pad properties, and slurry characteristics are optimized. The research was conducted in a systematic manner in which the optimized parameters for each phase are utilized in future phases. The optimum results from each of the phases provide an overall optimum characterization for BPM CMP. Results on the CMP machine input parameters indicate that for optimal surface roughness and material removal, low polish pressures and high velocities should be used on the BPM. Pad characteristics were monitored by non destructive technique and results indicate much faster deterioration of all pad characteristics versus polish time of BPM when compared to IC CMP. The optimum pad for PM polishing was the IC 1400 dual layer Suba V pad with a shore hardness of 57, and a k-groove pattern. The final phase of polishing evaluated the slurry polishing properties and novel nanodiamond (ND) slurry was created and benchmarked on BPM. The resulting CMP output parameters were monitored and neither the ND slurry nor the thermally responsive polymer slurry performed better than the commercially available Cabot iCue slurry for MRR or surface roughness. Research results indicate CMP is a feasible planarization technique for PM fabrication, but successful implementation of CMP for planarizing PM must address the high initial start up cost, increase in the number of replacement pads, and increase in polishing time to reach the required surface roughness for magnetic storage devices.
|
466 |
Field-Coupled Nano-Magnetic Logic SystemsPulecio, Javier F. 30 September 2010 (has links)
The following dissertation addresses the study of nano-magnetic devices configured to produce logic machines through magnetostatic coupling interactions.
The ability for single domain magnets to reliably couple through magnetostatic interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) devices (p. 36). It was significant to explore how fabrication defects affected the coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic coupling architectures were found to be robust to common fabrication defects. Experiments also verified the functionality of the previously reported MCA majority gate [1] and a novel implementation of a ferromagnetic MCA majority gate is reported.
From these results, the study of clocking Magnetic Cellular Automata (MCA) interconnect architectures was investigated (p. 54). The wire architectures were saturated under distinct directions of an external magnetic field. The experimental results suggested ferromagnetic coupled wires were able to mitigate magnetic frustrations better than anti-ferromagnetic coupled wires. Simulations were also implemented supporting the experimental results. Ferromagnetic wires were found to operate more reliably and will likely be the primary interconnects for MCA.
The first design and implementation of a coplanar cross wire system for MCA was constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). Simulations were implemented of a simple crossing wire junction to analyze micro-magnetic dynamics, data propagation, and associated energy states. Furthermore, two systems were physically realized; the first system consisted of two coplanar crossing
wires and the second was a more complex system consisting of over 120 nano-magnetic cells. By demonstrating the combination of all the possible logic states of the first system and the low ground state achieved by the second system, the data suggested coplanar cross wire systems would indeed be a viable architecture in MCA technology.
Finally, ongoing research of an unconventional method for image processing using nano-magnetic field-based computation is presented (p. 79). In magnetic field-based computing (MFC), nano-disks were mapped to low level segments of an image, and the magnetostatic coupling of magnetic dipole moments was directly related to the saliency of a low level segment for grouping. A proof of concept model for two MFC systems was implemented. Details such as the importance of fabricating circular nano-magnetic cells to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force Microscopy, and current results from a complex MFC system is outlined.
|
467 |
Laser sintering for high electrical conduction applicationsMurugesan Chakravarthy, Kumaran 12 July 2012 (has links)
Applications involving high electrical conduction require complex components that are difficult to be manufactured by conventional processes. Laser sintering (LS) is an additive manufacturing technique that overcomes these drawbacks by offering design flexibility. This study focuses upon optimizing the process of laser sintering to manufacture functional prototypes of components used in high electrical conduction applications. Specifically, components for two systems – high current sliding electrical contacts and fuel cells – were designed, manufactured and tested. C-asperity rails were made by LS and tested in a high current sliding electrical setup. Corrugated flow field plates were created by LS and their performance in a direct methanol fuel cell (DMFC) was tested. This is the first experimental attempt at using laser sintering for manufacturing such complex components for use in high electrical conduction applications.
The second part of this study involves optimization the laser sintering process. Towards this, efforts were made to improve the green strength of parts made by LS. Particle size of graphite/ phenolic resin and addition of nylon/11 and wax were tested for their effect upon green strength. Of these, significant improvement of green strength was observed by altering the particle size of the graphite/ phenolic resin system. New methods of improving green strength by employing fast cure phenolic resins with carbon fiber additions were successfully demonstrated. This study also identified a binder system and process parameters for indirect LS of stainless steel –for bipolar plate compression/ injection mold tooling. All the experimental results of this study lead us to believe that laser sintering can be developed as a robust and efficient process for the manufacture of specialized components used in advanced electrical conduction systems. / text
|
468 |
Links between modularization critical success factors and project performanceChoi, Jin Ouk 07 July 2014 (has links)
Through the exporting of a portion of site-based work to fabrication shops, modularization (MOD) can enhance efficiency in the construction industry. The industry, however, applies modularization at only a low level. To reach higher levels of modularization, the EPC industry needs new approaches. Previous studies have identified the current trends in and barriers to the industry's application of modularization. Moreover, in 2013, the Construction Industry Institute's (CII) Research Team 283 identified 21 critical success factors (CSFs) that create an optimum environment for a broader and more effective use of modularization. However, the researcher has identified a need to better understand the relative significance of MOD CSFs and their associations with project performance. Thus, the research was conducted to provide recommendations for better project performance by identifying correlations between the accomplishment of MOD CSFs and project performance and examining actual modular projects' MOD CSF accomplishment. This study identified four statistically significant positive correlations. Those are between the accomplishment of MOD CSFs and: 1) cost performance; 2) schedule performance; 3) Construction performance; and 4) Startup performance. In addition to the correlation analysis, the study also identified the CSFs that appear to contribute the most to 1) "Modular Project Success", 2) Construction success, 3) Startup success, 4) Cost performance, and 5) Schedule performance. To collect information on the actual industrial modular projects, the study surveyed industry experts. By using this study, many industrial project stakeholders from owners to fabricators, designers and EPC contractors, will be able to understand the relationships between MOD CSFs and project performance. Such an understanding should motivate them to achieve better project performance through implementing modularization CSFs. / text
|
469 |
Digital representation and constructability of minimal surfaces in concreteKeskin, Zeynep 21 September 2015 (has links)
This thesis investigates minimal surfaces in design and researches their potential for constructability in concrete through the creation of physical prototypes with the design of two mold making processes, one being sacrificial and the other reusable. The study starts by acknowledging that minimal surfaces have been extensively explored in the field of differential geometry for decades. In spite of the availability of geometric definitions which provide the basic background for digital model generation (which in this text is assumed to be equal to design itself), minimal surfaces inspired very few people in their architectural design. This study attempts to look into the wider implications of minimal surfaces for architecture by taking up the challenge of designing and realizing various processes of mold making for the fabrication of such surfaces in concrete. Throughout this study, a gradient of complexity in the definition and digital modeling of minimal surfaces will be included as well as a variety of production methods in a research and fabrication based process, in order to investigate the correlation between what can be designed and what can be produced.
I shall begin with a historical survey of the constructability of surfaces in thin shell concrete to provide background information for the reader. This chapter on the evolution of concrete structures presents a compilation of selected projects to illustrate the progress of thin shell construction throughout the history of architecture. It is here that I review what happened, why, and who made it possible. I draw heavily on published scholarly studies as most of the selected projects are cornerstones of the evolution of architecture and have been discussed by many others.
Here, I simply attempt to remind the reader of the achievements of these projects in order to justify why investigation of the constructability of minimal surfaces may be the next step in the evolutionary process.
After this section, the mathematics of surfaces in the complex plane is discussed based on information retrieved from many excellent resources. Here, the intention is to acquire information related to descriptions of various minimal surface types in differential geometry in order to be able to generate their representations in the digital environment. It would have been impossible to generate digital representations of minimal surfaces without the knowledge acquired through these descriptions.
The last section provides a comparison of ruled surfaces and minimal surfaces meant to reveal the similarities and differences of such surfaces with regard to the principles of digital representation and fabrication. It provides insight into various fabrication techniques and materials to illuminate the design of a making process in which the goal is to know and control every parameter regarding both the design and fabrication of an object. The discussion of the design of a making process for a complexly shaped object provided in this part is followed by discussion of casting prototypes in concrete. In that section, the subject matter is the design and testing of various mold making techniques for the production of concrete prototypes of a selected minimal surface geometry. This section presents an increasing complexity of mold making from a sacrificial mold to a reusable mold.
|
470 |
Bioinspired, Dynamic, Structured Surfaces for Biofilm PreventionEpstein, Alexander 03 April 2013 (has links)
Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature’s antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ~40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving nearly ~80% attachment reduction. We furthermore investigate an atomically mobile, slippery liquid infused porous surface (SLIPS) inspired by the pitcher plant. We show up to 99.6% reduction of multiple pathogenic biofilms over a 7-day period under both static and physiologically realistic flow conditions—a ~35x improvement over state-of-the-art surface chemistry, and over a far longer timeframe. Moreover, SLIPS is shown to be nontoxic: bacteria simply cannot attach to the smooth liquid interface. These bio-inspired strategies significantly advance biofilm attachment prevention and promise a tremendous range of industrial, clinical, and consumer applications. / Engineering and Applied Sciences
|
Page generated in 0.0959 seconds