11 |
Facial Feature Tracking and Head Pose Tracking as Input for Platform GamesAndersson, Anders Tobias January 2016 (has links)
Modern facial feature tracking techniques can automatically extract and accurately track multiple facial landmark points from faces in video streams in real time. Facial landmark points are defined as points distributed on a face in regards to certain facial features, such as eye corners and face contour. This opens up for using facial feature movements as a handsfree human-computer interaction technique. These alternatives to traditional input devices can give a more interesting gaming experience. They also open up for more intuitive controls and can possibly give greater access to computers and video game consoles for certain disabled users with difficulties using their arms and/or fingers. This research explores using facial feature tracking to control a character's movements in a platform game. The aim is to interpret facial feature tracker data and convert facial feature movements to game input controls. The facial feature input is compared with other handsfree inputmethods, as well as traditional keyboard input. The other handsfree input methods that are explored are head pose estimation and a hybrid between the facial feature and head pose estimation input. Head pose estimation is a method where the application is extracting the angles in which the user's head is tilted. The hybrid input method utilises both head pose estimation and facial feature tracking. The input methods are evaluated by user performance and subjective ratings from voluntary participants playing a platform game using the input methods. Performance is measured by the time, the amount of jumps and the amount of turns it takes for a user to complete a platform level. Jumping is an essential part of platform games. To reach the goal, the player has to jump between platforms. An inefficient input method might make this a difficult task. Turning is the action of changing the direction of the player character from facing left to facing right or vice versa. This measurement is intended to pick up difficulties in controling the character's movements. If the player makes many turns, it is an indication that it is difficult to use the input method to control the character movements efficiently. The results suggest that keyboard input is the most effective input method, while it is also the least entertaining of the input methods. There is no significant difference in performance between facial feature input and head pose input. The hybrid input version has the best results overall of the alternative input methods. The hybrid input method got significantly better performance results than the head pose input and facial feature input methods, while it got results that were of no statistically significant difference from the keyboard input method. Keywords: Computer Vision, Facial Feature Tracking, Head Pose Tracking, Game Control / Moderna tekniker kan automatiskt extrahera och korrekt följa multipla landmärken från ansikten i videoströmmar. Landmärken från ansikten är definerat som punkter placerade på ansiktet utefter ansiktsdrag som till exempel ögat eller ansikts konturer. Detta öppnar upp för att använda ansiktsdragsrörelser som en teknik för handsfree människa-datorinteraktion. Dessa alternativ till traditionella tangentbord och spelkontroller kan användas för att göra datorer och spelkonsoler mer tillgängliga för vissa rörelsehindrade användare. Detta examensarbete utforskar användbarheten av ansiktsdragsföljning för att kontrollera en karaktär i ett plattformsspel. Målet är att tolka data från en appliktion som följer ansiktsdrag och översätta ansiktsdragens rörelser till handkontrollsinmatning. Ansiktsdragsinmatningen jämförs med inmatning med huvudposeuppskattning, en hybrid mellan ansikstdragsföljning och huvudposeuppskattning, samt traditionella tangentbordskontroller. Huvudposeuppskattning är en teknik där applikationen extraherar de vinklar användarens huvud lutar. Hybridmetoden använder både ansiktsdragsföljning och huvudposeuppskattning. Inmatningsmetoderna granskas genom att mäta effektivitet i form av tid, antal hopp och antal vändningar samt subjektiva värderingar av frivilliga testanvändare som spelar ett plattformspel med de olika inmatningsmetoderna. Att hoppa är viktigt i ett plattformsspel. För att nå målet, måste spelaren hoppa mellan plattformar. En inefektiv inmatningsmetod kan göra detta svårt. En vändning är när spelarkaraktären byter riktning från att rikta sig åt höger till att rikta sig åt vänster och vice versa. Ett högt antal vändningar kan tyda på att det är svårt att kontrollera spelarkaraktärens rörelser på ett effektivt sätt. Resultaten tyder på att tangentbordsinmatning är den mest effektiva metoden för att kontrollera plattformsspel. Samtidigt fick metoden lägst resultat gällande hur roligt användaren hade under spelets gång. Där var ingen statisktiskt signifikant skillnad mellan huvudposeinmatning och ansikstsdragsinmatning. Hybriden mellan ansiktsdragsinmatning och huvudposeinmatning fick bäst helhetsresultat av de alternativa inmatningsmetoderna. Nyckelord: Datorseende, Följning av Ansiktsdrag, Följning av Huvud, Spelinmatning
|
12 |
3D face analysis : landmarking, expression recognition and beyondZhao, Xi 13 September 2010 (has links) (PDF)
This Ph.D thesis work is dedicated to automatic facial analysis in 3D, including facial landmarking and facial expression recognition. Indeed, facial expression plays an important role both in verbal and non verbal communication, and in expressing emotions. Thus, automatic facial expression recognition has various purposes and applications and particularly is at the heart of "intelligent" human-centered human/computer(robot) interfaces. Meanwhile, automatic landmarking provides aprior knowledge on location of face landmarks, which is required by many face analysis methods such as face segmentation and feature extraction used for instance for expression recognition. The purpose of this thesis is thus to elaborate 3D landmarking and facial expression recognition approaches for finally proposing an automatic facial activity (facial expression and action unit) recognition solution.In this work, we have proposed a Bayesian Belief Network (BBN) for recognizing facial activities, such as facial expressions and facial action units. A StatisticalFacial feAture Model (SFAM) has also been designed to first automatically locateface landmarks so that a fully automatic facial expression recognition system can be formed by combining the SFAM and the BBN. The key contributions are the followings. First, we have proposed to build a morphable partial face model, named SFAM, based on Principle Component Analysis. This model allows to learn boththe global variations in face landmark configuration and the local ones in terms of texture and local geometry around each landmark. Various partial face instances can be generated from SFAM by varying model parameters. Secondly, we have developed a landmarking algorithm based on the minimization an objective function describing the correlation between model instances and query faces. Thirdly, we have designed a Bayesian Belief Network with a structure describing the casual relationships among subjects, expressions and facial features. Facial expression oraction units are modelled as the states of the expression node and are recognized by identifying the maximum of beliefs of all states. We have also proposed a novel method for BBN parameter inference using a statistical feature model that can beconsidered as an extension of SFAM. Finally, in order to enrich information usedfor 3D face analysis, and particularly 3D facial expression recognition, we have also elaborated a 3D face feature, named SGAND, to characterize the geometry property of a point on 3D face mesh using its surrounding points.The effectiveness of all these methods has been evaluated on FRGC, BU3DFEand Bosphorus datasets for facial landmarking as well as BU3DFE and Bosphorus datasets for facial activity (expression and action unit) recognition.
|
13 |
Facial Feature Extraction Using Deformable TemplatesSerce, Hakan 01 December 2003 (has links) (PDF)
The purpose of this study is to develop an automatic facial feature extraction system, which is able to identify the detailed shape of eyes, eyebrows and mouth from facial images. The developed system not only extracts the location information of the features, but also estimates the parameters pertaining the contours and parts of the features using parametric deformable templates approach. In order to extract facial features, deformable models for each of eye, eyebrow, and mouth are developed. The development steps of the geometry, imaging model and matching algorithms, and energy functions for each of these templates are presented in detail, along with the important implementation issues.
In addition, an eigenfaces based multi-scale face detection algorithm which incorporates standard facial proportions is implemented, so that when a face is detected the rough search regions for the facial features are readily available.
The developed system is tested on JAFFE (Japanese Females Facial Expression Database), Yale Faces, and ORL (Olivetti Research Laboratory) face image databases. The performance of each deformable templates, and the face detection algorithm are discussed separately.
|
14 |
The systematic analysis and innovative design of the essential cultural elements with Peking Opera Painted Faces (POPF)Wang, Ding January 2016 (has links)
Peking Opera (‘Jingju’) is one of the most iconic traditional theatres in China, marketed as a global signifier of Chinese theatre and national identity. The research considers current recognised illustrations of Peking Opera Painted Faces (POPF). Through both new cultural-based product design solutions and design inspired visual communication solutions, the purpose of the new design is to apply the semantic features of Chinese Traditional POPF to the modern design, and establish close contact with all aspects of social life. Also to promote a series of developable plans including product design, interaction design, system design and service design in China and Western countries proceeding from POPF, along with the integration of other elements of traditional Chinese cultures and arts. *POPF is short for Peking Opera Painted Faces.
|
15 |
戴眼鏡對人臉辨識系統之影響鄒博岱, Tsou , Po-Tai Unknown Date (has links)
本研究嘗試不全以負面假設來看待配戴眼鏡對人臉辨識的影響。吾人將以邊緣偵測圖為基礎,以邊點強度的分析來建立一套定位眼鏡的偵測系統。同時用偵測出的鏡框位置,以邊緣點的強度、密度比較的方式,定位眼睛的位置;並以前述兩套偵測演算,採擷其過程的資訊,進一步地定位鼻子與嘴巴的位置。這些演算形成一個簡易的人臉特徵定位系統,其將可處理配戴眼鏡的人臉;吾人也將進一步地經由其處理過程與結果,分析眼鏡對區域人臉辨識的影響,進而引導出非自然物件可能對人臉辨識的阻礙或輔助。
論文也將以全域比對法中的PCA與ICA演算法作一連串的實驗,剖析眼鏡對於全域辨識的影響;此外,亦用相同的方法來測試非自然物(眼鏡)、光源亮度與人臉角度對於人臉辨識阻礙的程度,以探究是否系統值得花費更大的代價,來移除眼鏡這個被一致認定的人臉辨識障礙,並得以在辨識演算法上獲得更高的效能。 / The objective of this thesis is to investigate the efficacy of face recognition systems when the subjects are wearing glasses. We do not presume that non-facial features such as glasses are nuisances. Instead, we will study whether the inclusion of glasses will have a positive impact on the face detection procedure and how it affects the feature extraction process. We will demonstrate how to use techniques based on local feature analysis to reduce the uncertainties in the matching result due to interferences around the eyes and nose caused by optical glasses.
We have also conducted extensive experiments to analyze the effect of glasses on face recognition systems based on global matching strategy. Specifically, we perform both principal component analysis (PCA) and independent component analysis (ICA) on face databases with different percentage of subjects wearing eye glasses. It is concluded that external objects such as glasses will have a negative impact on face recognition using global analysis approaches. However, the adverse influences of illumination and pose are more conspicuous during the recognition process. Therefore, one should take caution when attempting to adapt the global matching scheme to handle the difficulties caused by glasses.
|
16 |
3D face analysis : landmarking, expression recognition and beyond / Reconnaissance de l'expression du visageZhao, Xi 13 September 2010 (has links)
Cette thèse de doctorat est dédiée à l’analyse automatique de visages 3D, incluant la détection de points d’intérêt et la reconnaissance de l’expression faciale. En effet, l’expression faciale joue un rôle important dans la communication verbale et non verbale, ainsi que pour exprimer des émotions. Ainsi, la reconnaissance automatique de l’expression faciale offre de nombreuses opportunités et applications, et est en particulier au coeur d’interfaces homme-machine "intelligentes" centrées sur l’être humain. Par ailleurs, la détection automatique de points d’intérêt du visage (coins de la bouche et des yeux, ...) permet la localisation d’éléments du visage qui est essentielle pour de nombreuses méthodes d’analyse faciale telle que la segmentation du visage et l’extraction de descripteurs utilisée par exemple pour la reconnaissance de l’expression. L’objectif de cette thèse est donc d’élaborer des approches de détection de points d’intérêt sur les visages 3D et de reconnaissance de l’expression faciale pour finalement proposer une solution entièrement automatique de reconnaissance de l’activité faciale incluant l’expression et les unités d’action (ou Action Units). Dans ce travail, nous avons proposé un réseau de croyance bayésien (Bayesian Belief Network ou BBN) pour la reconnaissance d’expressions faciales ainsi que d’unités d’action. Un modèle statistique de caractéristiques faciales (Statistical Facial feAture Model ou SFAM) a également été élaboré pour permettre la localisation des points d’intérêt sur laquelle s’appuie notre BBN afin de permettre la mise en place d’un système entièrement automatique de reconnaissance de l’expression faciale. Nos principales contributions sont les suivantes. Tout d’abord, nous avons proposé un modèle de visage partiel déformable, nommé SFAM, basé sur le principe de l’analyse en composantes principales. Ce modèle permet d’apprendre à la fois les variations globales de la position relative des points d’intérêt du visage (configuration du visage) et les variations locales en terme de texture et de forme autour de chaque point d’intérêt. Différentes instances de visages partiels peuvent ainsi être produites en faisant varier les valeurs des paramètres du modèle. Deuxièmement, nous avons développé un algorithme de localisation des points d’intérêt du visage basé sur la minimisation d’une fonction objectif décrivant la corrélation entre les instances du modèle SFAM et les visages requête. Troisièmement, nous avons élaboré un réseau de croyance bayésien (BBN) dont la structure décrit les relations de dépendance entre les sujets, les expressions et les descripteurs faciaux. Les expressions faciales et les unités d’action sont alors modélisées comme les états du noeud correspondant à la variable expression et sont reconnues en identifiant le maximum de croyance pour tous les états. Nous avons également proposé une nouvelle approche pour l’inférence des paramètres du BBN utilisant un modèle de caractéristiques faciales pouvant être considéré comme une extension de SFAM. Finalement, afin d’enrichir l’information utilisée pour l’analyse de visages 3D, et particulièrement pour la reconnaissance de l’expression faciale, nous avons également élaboré un descripteur de visages 3D, nommé SGAND, pour caractériser les propriétés géométriques d’un point par rapport à son voisinage dans le nuage de points représentant un visage 3D. L’efficacité de ces méthodes a été évaluée sur les bases FRGC, BU3DFE et Bosphorus pour la localisation des points d’intérêt ainsi que sur les bases BU3DFE et Bosphorus pour la reconnaissance des expressions faciales et des unités d’action. / This Ph.D thesis work is dedicated to automatic facial analysis in 3D, including facial landmarking and facial expression recognition. Indeed, facial expression plays an important role both in verbal and non verbal communication, and in expressing emotions. Thus, automatic facial expression recognition has various purposes and applications and particularly is at the heart of "intelligent" human-centered human/computer(robot) interfaces. Meanwhile, automatic landmarking provides aprior knowledge on location of face landmarks, which is required by many face analysis methods such as face segmentation and feature extraction used for instance for expression recognition. The purpose of this thesis is thus to elaborate 3D landmarking and facial expression recognition approaches for finally proposing an automatic facial activity (facial expression and action unit) recognition solution.In this work, we have proposed a Bayesian Belief Network (BBN) for recognizing facial activities, such as facial expressions and facial action units. A StatisticalFacial feAture Model (SFAM) has also been designed to first automatically locateface landmarks so that a fully automatic facial expression recognition system can be formed by combining the SFAM and the BBN. The key contributions are the followings. First, we have proposed to build a morphable partial face model, named SFAM, based on Principle Component Analysis. This model allows to learn boththe global variations in face landmark configuration and the local ones in terms of texture and local geometry around each landmark. Various partial face instances can be generated from SFAM by varying model parameters. Secondly, we have developed a landmarking algorithm based on the minimization an objective function describing the correlation between model instances and query faces. Thirdly, we have designed a Bayesian Belief Network with a structure describing the casual relationships among subjects, expressions and facial features. Facial expression oraction units are modelled as the states of the expression node and are recognized by identifying the maximum of beliefs of all states. We have also proposed a novel method for BBN parameter inference using a statistical feature model that can beconsidered as an extension of SFAM. Finally, in order to enrich information usedfor 3D face analysis, and particularly 3D facial expression recognition, we have also elaborated a 3D face feature, named SGAND, to characterize the geometry property of a point on 3D face mesh using its surrounding points.The effectiveness of all these methods has been evaluated on FRGC, BU3DFEand Bosphorus datasets for facial landmarking as well as BU3DFE and Bosphorus datasets for facial activity (expression and action unit) recognition.
|
17 |
Investigation of hierarchical deep neural network structure for facial expression recognitionMotembe, Dodi 01 1900 (has links)
Facial expression recognition (FER) is still a challenging concept, and machines struggle to
comprehend effectively the dynamic shifts in facial expressions of human emotions. The
existing systems, which have proven to be effective, consist of deeper network structures that
need powerful and expensive hardware. The deeper the network is, the longer the training and
the testing. Many systems use expensive GPUs to make the process faster. To remedy the
above challenges while maintaining the main goal of improving the accuracy rate of the
recognition, we create a generic hierarchical structure with variable settings. This generic
structure has a hierarchy of three convolutional blocks, two dropout blocks and one fully
connected block. From this generic structure we derived four different network structures to
be investigated according to their performances. From each network structure case, we again
derived six network structures in relation to the variable parameters. The variable parameters
under analysis are the size of the filters of the convolutional maps and the max-pooling as
well as the number of convolutional maps. In total, we have 24 network structures to
investigate, and six network structures per case. After simulations, the results achieved after
many repeated experiments showed in the group of case 1; case 1a emerged as the top
performer of that group, and case 2a, case 3c and case 4c outperformed others in their
respective groups. The comparison of the winners of the 4 groups indicates that case 2a is the
optimal structure with optimal parameters; case 2a network structure outperformed other
group winners. Considerations were done when choosing the best network structure,
considerations were; minimum accuracy, average accuracy and maximum accuracy after 15
times of repeated training and analysis of results. All 24 proposed network structures were
tested using two of the most used FER datasets, the CK+ and the JAFFE. After repeated
simulations the results demonstrate that our inexpensive optimal network architecture
achieved 98.11 % accuracy using the CK+ dataset. We also tested our optimal network
architecture with the JAFFE dataset, the experimental results show 84.38 % by using just a
standard CPU and easier procedures. We also compared the four group winners with other
existing FER models performances recorded recently in two studies. These FER models used
the same two datasets, the CK+ and the JAFFE. Three of our four group winners (case 1a,
case 2a and case 4c) recorded only 1.22 % less than the accuracy of the top performer model
when using the CK+ dataset, and two of our network structures, case 2a and case 3c came in
third, beating other models when using the JAFFE dataset. / Electrical and Mining Engineering
|
Page generated in 0.0581 seconds