• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inclined load capacity of suction caisson in clay

Supachawarote, Chairat January 2007 (has links)
This thesis investigates the capacity and failure mode of suction caissons under inclined loading. Parametric finite element analyses have been carried out to investigate the effects of caisson geometry, loading angle, padeye depth (i.e. load attachment point), soil profile and caisson-soil interface condition. Displacement-controlled analyses were carried out to determine the ultimate limit state of the suction caissons under inclined load and the results presented as interaction diagrams in VH load space. VH failure interaction diagrams are presented for both cases where the caisson-soil interface is fully-bonded and where a crack is allowed to form along the side of the caisson. An elliptical equation is fitted to the normalised VH failure interaction diagram to describe the general trend in the case where the caisson-soil interface is fully-bonded. Parametric study reveals that the failure envelope in the fully-bonded case could be scaled down (contracted failure envelope) to represent the holding capacity when a crack is allowed to form. A stronger effect of crack on the capacity was observed in the lightly overconsolidated soil, compared to the normally consolidated soil. The sensitivity of caisson capacity to the changes in load attachment position or loading angle was quantified based on the load-controlled analyses. It was found that, for caisson length to diameter ratios of up to 5, the optimal centreline loading depth (i.e. where the caisson translates with no rotation) is in the range 0.65L to 0.7L in normally consolidated soil, but becomes shallower for the lightly overconsolidated soil profile where the shear strength profile is more uniform. The reduction of holding capacity when the padeye position is shifted from the optimal location was also quantified for normally consolidated and lightly overconsolidated soil profiles at loading angle of 30 [degrees]. Upper bound analyses were carried out to augment the finite element study. Comparison of holding capacity and accompanying failure mechanisms obtained from the finite element and upper bound methods are made. It was found that the upper bound generally overpredicted the inclined load capacity obtained from the finite element analyses especially for the shorter caisson considered in this study. A correction factor is introduced to adjust the upper bound results for the optimal condition. Comparisons of non-optimal capacity were also made and showed that the agreement between the upper bound and finite element analyses are sensitive to the change in the centreline loading depth when the caisson-soil interface is fully bonded, but less so when a crack forms.
2

Modeling Approaches to Determination of Appropriate Depth and Spacing of Subsurface Drip Irrigation Tubing in Alfalfa to Ensure Soil Trafficability

Reyes Esteves, Rocio Guadalupe, Reyes Esteves, Rocio Guadalupe January 2017 (has links)
A major design issue in the implementation of a Subsurface Drip Irrigation (SDI) system for extensively crops such as alfalfa (i.e. crops that cover the entire surface as opposed to row crops), is the determination of the appropriate depth of placement of the drip line tubing. It is important to allow necessary farming operations with heavy equipment at harvesting times while still providing adequate water to meet the crop water requirements. It is also a need to ensure appropriate spacing between the dripline laterals to assure reasonable lateral irrigation uniformity for plant germination. In this study, the program HYDRUS-2D was used to determine the wetting pattern above and laterally from a subsurface drip emitter of an SDI system, for three soils typically found in Southern California and Arizona, a Sandy Clay Loam (SCL), a Clay Loam (CL) and a Loam (L). The design and management conditions from an experimental alfalfa field with an SDI system located at Holtville CA were used and analyzed. The first irrigation design was with a drip line depth of placement of 30 cm and the second design with an installation depth of 50 cm. The two different irrigation management schemes utilized by the farmers and producers in that area were: one with a running time of six hours and a frequency of every three days and the second one with an irrigation running time of twenty-four hours with a frequency of seven days or irrigation every week. After having carried out the analysis and studies of the irrigation designs and management schemes mentioned above, a new model with its corresponding management was proposed to meet the alfalfa water requirements under that particular field and weather conditions while we ensure a sufficiently dry soil surface at harvesting time for each soil case. This irrigation management includes twelve hours or irrigation every three days, for each of the three soils analyzed. It was found that the vertical rise of water above the emitters on the day of the cut, for our recommended SDI management was 26 cm, 29 cm, and 27 cm, with a moisture content at the soil surface of 14.9%, 24%, and 13% for the SCL, CL, and L soils respectively. Then, through the utilization of classical soil mechanics theory, an analysis to calculate the increase in stress on soils at any depth due to a load on the surface from a conventional tractor used during harvest operations was made for the proposed SDI system. The results from the increase in stress were then used together with soil strength properties such as shear strength as a function of soil moisture content to determine the minimum allowable depth of placement of the drip line tubing to ensure that soil failure does not occur. The load increase from a 3,300-kg four-wheel tractor was found to be 0.59 kg/cm2 under a rear tire at 10 cm below the surface and 0.07 kg/cm2 at 70 cm below the surface. To ensure that shearing failure does not occur, a stress analysis using Mohr’s circle indicated that the soil moisture content at 10 cm below the surface should be no greater than 26.8%, 32.7%, and 27% in the SCL, CL, and L soils respectively. The mimimum moisture content of 26.8% occur at 10 cm above the drip line for a SCL soil, which means that the minimum depth placement to avoid failure would be 40 cm below the surface. A similar analysis for the CL and L yielded minimum installation depths of 35 cm and 40 cm respectively. This type of analysis is useful in determining the depth of placement of SDI drip line tubing to ensure adequate trafficability of soil irrigated with subsurface drip irrigation systems. An additional outcome of the modeling study was the determination of the lateral extent of the wetted zone which can be used to determine the appropriate lateral spacing between drip line tubing. Thus, to ensure adequate spatial coverage by a subsurface drip system, the maximum horizontal spacing should be of 80 cm for SCL and L soils and 90 cm in CL soils.
3

Load capacity of anchorage to concrete at nuclear facilities : Numerical studies of headed studs and expansion anchors

Eriksson, Daniel, Gasch, Tobias January 2011 (has links)
The aim of this thesis was to study the load bearing capacity of anchor plates, used for anchorage to concrete located at nuclear facilities. Two different type of anchor plates were examined, which together constitute the majority of the anchor plates used at Forsmark nuclear facility in Sweden. The first is a cast-in-place anchor plate with headed studs and the second is a post-installed anchor plate which uses sleevetype expansion anchors. Hence, anchors with both a mechanical or a frictional interlock to the concrete were examined. The main analysis tool was the finite element method, through the use of the two commercially available software packages ABAQUS and ADINA and their non-linear material models for concrete and steel. As a first step, the numerical methods were verified against experimental results from the literature. However, these only concern single anchors. The results from the verifications were then used to build the finite element models of the anchor plates. These were then subjected to different load combinations with the purpose to find the ultimate load capacity. Failure loads from the finite element analyses were then compared to the corresponding loads calculated according to the new European technical specification SIS-CEN/TS 1992-4 (2009). Most of the failure loads from the numerical analyses were higher than the loads obtained from the technical specification, although in some cases the numerical results were lower than the technical specification value. However, many conservative assumptions regarding the finite element models were made, hence there might still be an overcapacity present. All analyses that underestimate the failure load were limited to large and slender anchor plates, which exhibit an extensive bending of the steel plate. The bending of the steel plate induce shear forces on the anchors, which leads to a lower tensile capacity. In design codes, which assume rigid steel plates, this phenomenon is neglected. The failure loads from all different load combinations analysed were then used to develop failure envelopes as a demonstration of a useful technique, which can be utilised in the design process of complex load cases.

Page generated in 0.0374 seconds