• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ensaio não destrutivo baseado em medidas de campo magnético para acompanhamento da formação da fase sigma em um aço inoxidável duplex

Fialho, Walter Macêdo Lins 18 June 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-05-23T14:29:46Z No. of bitstreams: 1 arquivo total.pdf: 4795148 bytes, checksum: c54fd3a89b2f0d0910af969c83f2d9b6 (MD5) / Made available in DSpace on 2017-05-23T14:29:47Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 4795148 bytes, checksum: c54fd3a89b2f0d0910af969c83f2d9b6 (MD5) Previous issue date: 2015-06-18 / Duplex stainless steels (AID) are characterized for having good mechanical strength and corrosion. However, when subjected to manufacturing processes requiring the material thermal cycles with temperatures above 600 ° C, occurs emergence of fragile phases that compromise his toughness and corrosion resistance. Among these phases there is the presence of σ phase, rich in chromium and high hardness. In this paper we sought to develop a monitoring technique of the formation of σ phase. This technique is based on the study of the interaction between microstructure of the duplex stainless steel and the magnetic field applied to the material. Specimen with different amounts of σ phase were obtained by aging at temperatures of 800 °C and 900 °C. Aged AID was characterized by optical microscopy and scanning electron, hardness tests, impact tests and X-ray diffraction. The volumetric percentage of this phase was estimated by X-ray diffraction and processing of optical microscopy images. The magnetic field measurements were performed with a Hall effect sensor. The results show that the rise of the phase reduced the σ value of the magnetic permeability of the material, indicating that the magnetic properties and permeability measurements, as well as the resultant magnetic field, can be used for monitoring formation of this phase. The study proves to be developed effective technique for monitoring the duplex stainless steel embrittlement. / Os aços inoxidáveis duplex (AID) se caracterizam por apresentarem boa resistência mecânica e à corrosão. Contudo, quando submetidos a processos de fabricação que impõe ao material ciclos térmicos com temperaturas acima de 600 oC, ocorre surgimento de fases fragilizantes que comprometem a sua tenacidade e resistência à corrosão. Entre essas fases destaca-se a presença da fase σ, rica em cromo e de elevada dureza. Neste trabalho buscou-se desenvolver uma técnica de acompanhamento da formação da fase σ. Essa técnica se baseou no estudo da interação entre microestrutura do aço inoxidável duplex e ao campo magnético aplicado ao material. Amostras com diferentes quantidades de fase σ foram obtidas pelo envelhecimento nas temperaturas de 800ºC e 900ºC. O AID envelhecido foi caracterizado por microscopia ótica e eletrônica de varredura, ensaios de dureza, testes de impacto e difração de raios X. O percentual volumétrico dessa fase foi estimado por difração de raios X e processamento de imagens de microscopia óptica. As medidas de campo magnético foram realizadas com um sensor de efeito Hall. Os resultados mostram que o surgimento da fase σ reduziu o valor da permeabilidade magnética do material, indicando que as propriedades magnéticas e que medidas de permeabilidade, bem como do campo magnético resultante, podem ser utilizadas para acompanhamento de formação dessa fase. O estudo comprova ser a técnica desenvolvida eficaz para monitoramento da fragilização de aço inox duplex.
12

Estudo da precipitação de nitreto de cromo e fase sigma por simulação térmica da zona afetada pelo calor na soldagem multipasse de aços inoxidáveis duplex. / Chromium nitride and sigma phase precipitation study by heat-affected zone thermal simulation of duplex stainless steels multipass welding.

Antonio José Ramirez Londoño 19 August 1997 (has links)
Os aços inoxidáveis duplex são materiais com um excelente desempenho, devido às suas sobressalentes propriedades mecânicas e excelente resistência à corrosão. Uma composição química adequada e microestrutura balanceada são as responsáveis por esta combinação de propriedades. No entanto, são estes mesmos fatores que os fazem especialmente susceptíveis à precipitação de fases intermetálicas, com efeitos maléficos no seu desempenho. Durante os ciclos térmicos de uma soldagem multipasse, a precipitação de intermetálicos é crítica. Foi desenvolvido um método para simular os ciclos térmicos de uma solda multipasse. Usando este método, foi estudada a precipitação de nitreto de cromo e fase sigma na zona afetada pelo calor submetida a temperaturas abaixo de 950°C dos aços inoxidáveis duplex UNS S31803 e S32550. Foram estudadas energias de soldagem na faixa de 0,4 a 1,0 kJ/mm. Foi determinada mediante extração de precipitados, seguida de difração de raios X na câmara de Debye-Scherrer e microscopia eletrônica de transmissão, a precipitação de nitreto de cromo para energias de soldagem de 0,4 a 1,0 kJ/mm e de fase sigma para energias de soldagem de 0,6-1,0 KJ/mm, no UNS S32550. Já o UNS S31803 não apresentou precipitação alguma para as energias de soldagem estudadas. Baseando-se nos resultados verifica-se que durante uma soldagem multipasse o UNS S31803 é menos propenso que o UNS S32550 à precipitação de intermetálicos na zona afetada pelo calor submetida a temperaturas abaixo de 950°C. / Duplex stainless steels belong to a group of high performance stainless steels regarding to corrosion and mechanical properties. These achievements are related to a suitable chemical composition and a balanced microstructure. During welding thermal cycles the microstructure changes and, consequently, corrosion and mechanical properties might be impaired due to a precipitation of intermetallic phases. This precipitation is an issue to be addressed for multipass welding. It was developed a method for simulate the multipass welding thermal cycles. Using this method chromium nitride and sigma phase precipitation was studied in a simulated heat affected zone of multipass welding (three passes) of UNS S31803 and UNS S32550 duplex stainless steels with different heat inputs (0,4 to 1,0 kJ/mm). The HAZ simulated region was below 950°C maximum temperature. Microstructural characterization of simulated samples showed discontinuous films of a precipitated phase at ferrite/ferrite grain boundaries and ferrite/austenite interfaces were observed only in a UNS S32550 duplex grade for all heat inputs simulated. This suggests that sigma phase and chromium nitride precipitation took place during sample thermocycling. X-ray diffraction in a Debye-Scherrer chamber of extracted precipitates and electron diffraction by TEM confirmed the presence of chromium nitrides for all range of heat input studied and sigma phase for heat input above 0,6 kJ/mm. On the other hand, microstructural analysis of UNS S31803 simulated samples did not present precipitation of intermetallic phases in the tested temperature range of HAZ. Based on these results, UNS S31803 is more resistant than UNS S32550 to intermetallic phases precipitation in multipass welding.
13

Influência da fase sigma na corrosão em microrregiões de juntas soldadas por processos MIG do aço inoxidável AISI 316L / Influence of the sigma phase on corrosion in microrregions of welded joints by MIG processes of stainless steel AISI 316L

Guilherme, Luis Henrique 06 February 2017 (has links)
Projetos de instalações industriais com requisitos de assepsia e resistência à corrosão têm os aços inoxidáveis austeníticos como materiais de engenharia, e a liga AISI 316L é amplamente utilizada. A soldagem de chapas espessas é executada por processos MIG e a qualificação do procedimento de soldagem é realizada com base em propriedades mecânicas, avaliação insuficiente para aplicações que necessitam de uma película passiva resistente. A microestrutura da zona fundida da liga AISI 316L exerce influência sobre a resistência à corrosão, e há a necessidade de definir os mecanismos que governam a influência da fase sigma na resistência à corrosão. Inserido neste contexto, o objetivo do presente estudo foi avaliar a influência da fase sigma na resistência à corrosão em microrregiões de juntas soldadas multipasse da liga AISI 316L produzidas pelo processo MIG nos modos de transferência metálica pulsado, curto-circuito e spray. A metodologia consistiu em reproduzir amostras soldadas com parâmetros de soldagem aplicados na indústria para os modos de transferência metálica de interesse, com detalhada caracterização microestrutural da zona fundida de cada condição de soldagem. Em seguida, foram conduzidos ensaios eletroquímicos de corrosão em microrregiões da junta soldada em solução de 3,5% NaCl, e a influência da fase sigma na corrosão por pite foi avaliada por ensaio de imersão em solução de cloreto férrico (6% FeCl3). Caracterizou-se a área exposta à varredura por técnicas de microscopia ótica, microscopia eletrônica de varredura e microanálise química. A soldagem no modo pulsado resultou em uma zona fundida com microestrutura bifásica com a mais baixa fração volumétrica de ferrita delta, de refinada morfologia e isenta de fase sigma, proporcionando o mais nobre desempenho nos ensaios de corrosão, que se manifestou pelo mecanismo de corrosão localizada. A avaliação da área exposta à varredura demonstrou que, previamente a corrosão por pite, a corrosão incia-se de forma localizada, contudo, sem corrosão preferencial de uma das fases, característica que proporcionou parâmetros eletroquímicos mais nobres do que aqueles com corrosão seletiva de fases. Está característica é atribuída à ausência da fase sigma na microestrutura da zona fundida do modo pulsado. No modo curto-circuito ocorreu à decomposição eutetóide da ferrita delta formando a austenita secundária e a fase sigma, sendo está última precipitada principalmente no interior da ferrita delta. A morfologia da corrosão se dá, na fase inicial, como corrosão seletiva de fases, com degradação preferencial da austenita secundária e em direção a ferrita delta, devido à fragilização desta fase pela precipitação de fase sigma em seu interior. A degradação seletiva das fases austenita secundária e ferrita delta causam danos localizados ao filme passivo e, nestas regiões empobrecidas de cromo e molibdênio, ocorre à corrosão por pite. O modo spray com a mais elevada energia de soldagem resultou em uma ferrita delta grosseira e com estreitas bandas de austenita na microrregião de enchimento do chanfro e na raiz da solda, com alto índice de fase sigma nestas localizações. O processo corrosivo da zona fundida caracterizou-se por corrosão seletiva da fase austenita secundária e em direção à matriz austenítica, uma vez que a fase sigma revestiu a ferrita delta, tornando-a a região de comportamento catódico entre o par galvânico formado entre as fases austenita e ferrita delta. A corrosão seletiva da matriz austenítica causa a fragilização localizada do filme passivo com consequente corrosão por pite. O trabalho realizado permite concluir que o potencial de pite foi reduzido com a presença de fase sigma e fases a esta associada, e justamente o modo pulsado obteve destacada resistência à corrosão em função da ausência da fase sigma em sua microestrutura. / Industrial plant designs with asepsis and corrosion resistance requirements have austenitic stainless steels as engineering materials, and the AISI 316L alloy is widely used. The welding of thick plates is performed by MIG processes and the qualification of the welding procedure is carried out based on mechanical properties, insufficient evaluation for applications that require a resistant passive film. The microstructure of the molten zone of the AISI 316L alloy influences the corrosion resistance, and it is necessary to define the mechanisms that govern the influence of the sigma phase on corrosion resistance. In this context, the aim of the present study was to evaluate the influence of the sigma phase on the corrosion resistance in microrregions of multipass welded joints of the AISI 316L alloy produced by MIG process with metal transfer in pulsed, short circuit and spray modes. The methodology consisted in reproducing welded samples with welding parameters applied in the industry for the modes of metallic transfer of interest, with detailed microstructural characterization of the molten zone of each welding condition. Then, electrochemical corrosion tests were carried out in microrregions of the welded joint in 3.5% NaCl solution, and the influence of the sigma phase on pitting corrosion was evaluated by immersion test in ferric chloride solution (6% FeCl3). The area exposed to the scanning was characterized by optical microscopy, scanning electron microscopy and chemical microanalysis. Pulsed mode welding resulted in a molten zone with a biphasic microstructure with the lowest volume fraction of delta ferrite, refined morphology and sigma phase free, providing the noblest performance in the corrosion tests, which occurred in the form of localized corrosion. The evaluation of the area exposed to the scan showed that, prior to pitting corrosion, the corrosion started in a localized manner, however, without preferential corrosion of one of the phases, a characteristic that gave better electrochemical parameters than those with selective corrosion of phases. This characteristic is attributed to the absence of the sigma phase in the microstructure of the molten zone of the pulsed mode. In the short-circuit mode, the eutectoid decomposition of the delta ferrite formed the secondary austenite and the sigma phase, the latter being mainly precipitated inside the delta ferrite. The corrosion morphology occurs in the initial phase as selective corrosion of phases, with preferential degradation of the secondary austenite and towards the ferrite delta, due to the embrittlement of this phase by the precipitation of the sigma phase inside. The selective degradation of the secondary austenite and delta ferrite phases causes localized damage to the passive film and, in these impoverished regions of chromium and molybdenum, occurs to pitting corrosion. The spray mode with the highest welding energy resulted in a coarse delta ferrite with narrow bands of austenite in the chamfer filling microrregion and at the root of the weld, with a high sigma phase index at these locations. The corrosive process of the molten zone was characterized by selective corrosion of the secondary austenite phase and towards the austenitic matrix, since the sigma phase covered the delta ferrite, making it the region of cathodic behavior between the galvanic pair formed between the austenite and ferrite delta phases. Selective corrosion of the austenitic matrix causes localized embrittlement of the passive film with consequent pitting corrosion. The study accomplished allows concluding that the pitting potential was reduced with the presence of sigma phase and phases associated with it, and precisely the pulsed mode obtained outstanding corrosion resistance due to the absence of the sigma phase in its microstructure.
14

Influência da fase sigma na corrosão em microrregiões de juntas soldadas por processos MIG do aço inoxidável AISI 316L / Influence of the sigma phase on corrosion in microrregions of welded joints by MIG processes of stainless steel AISI 316L

Luis Henrique Guilherme 06 February 2017 (has links)
Projetos de instalações industriais com requisitos de assepsia e resistência à corrosão têm os aços inoxidáveis austeníticos como materiais de engenharia, e a liga AISI 316L é amplamente utilizada. A soldagem de chapas espessas é executada por processos MIG e a qualificação do procedimento de soldagem é realizada com base em propriedades mecânicas, avaliação insuficiente para aplicações que necessitam de uma película passiva resistente. A microestrutura da zona fundida da liga AISI 316L exerce influência sobre a resistência à corrosão, e há a necessidade de definir os mecanismos que governam a influência da fase sigma na resistência à corrosão. Inserido neste contexto, o objetivo do presente estudo foi avaliar a influência da fase sigma na resistência à corrosão em microrregiões de juntas soldadas multipasse da liga AISI 316L produzidas pelo processo MIG nos modos de transferência metálica pulsado, curto-circuito e spray. A metodologia consistiu em reproduzir amostras soldadas com parâmetros de soldagem aplicados na indústria para os modos de transferência metálica de interesse, com detalhada caracterização microestrutural da zona fundida de cada condição de soldagem. Em seguida, foram conduzidos ensaios eletroquímicos de corrosão em microrregiões da junta soldada em solução de 3,5% NaCl, e a influência da fase sigma na corrosão por pite foi avaliada por ensaio de imersão em solução de cloreto férrico (6% FeCl3). Caracterizou-se a área exposta à varredura por técnicas de microscopia ótica, microscopia eletrônica de varredura e microanálise química. A soldagem no modo pulsado resultou em uma zona fundida com microestrutura bifásica com a mais baixa fração volumétrica de ferrita delta, de refinada morfologia e isenta de fase sigma, proporcionando o mais nobre desempenho nos ensaios de corrosão, que se manifestou pelo mecanismo de corrosão localizada. A avaliação da área exposta à varredura demonstrou que, previamente a corrosão por pite, a corrosão incia-se de forma localizada, contudo, sem corrosão preferencial de uma das fases, característica que proporcionou parâmetros eletroquímicos mais nobres do que aqueles com corrosão seletiva de fases. Está característica é atribuída à ausência da fase sigma na microestrutura da zona fundida do modo pulsado. No modo curto-circuito ocorreu à decomposição eutetóide da ferrita delta formando a austenita secundária e a fase sigma, sendo está última precipitada principalmente no interior da ferrita delta. A morfologia da corrosão se dá, na fase inicial, como corrosão seletiva de fases, com degradação preferencial da austenita secundária e em direção a ferrita delta, devido à fragilização desta fase pela precipitação de fase sigma em seu interior. A degradação seletiva das fases austenita secundária e ferrita delta causam danos localizados ao filme passivo e, nestas regiões empobrecidas de cromo e molibdênio, ocorre à corrosão por pite. O modo spray com a mais elevada energia de soldagem resultou em uma ferrita delta grosseira e com estreitas bandas de austenita na microrregião de enchimento do chanfro e na raiz da solda, com alto índice de fase sigma nestas localizações. O processo corrosivo da zona fundida caracterizou-se por corrosão seletiva da fase austenita secundária e em direção à matriz austenítica, uma vez que a fase sigma revestiu a ferrita delta, tornando-a a região de comportamento catódico entre o par galvânico formado entre as fases austenita e ferrita delta. A corrosão seletiva da matriz austenítica causa a fragilização localizada do filme passivo com consequente corrosão por pite. O trabalho realizado permite concluir que o potencial de pite foi reduzido com a presença de fase sigma e fases a esta associada, e justamente o modo pulsado obteve destacada resistência à corrosão em função da ausência da fase sigma em sua microestrutura. / Industrial plant designs with asepsis and corrosion resistance requirements have austenitic stainless steels as engineering materials, and the AISI 316L alloy is widely used. The welding of thick plates is performed by MIG processes and the qualification of the welding procedure is carried out based on mechanical properties, insufficient evaluation for applications that require a resistant passive film. The microstructure of the molten zone of the AISI 316L alloy influences the corrosion resistance, and it is necessary to define the mechanisms that govern the influence of the sigma phase on corrosion resistance. In this context, the aim of the present study was to evaluate the influence of the sigma phase on the corrosion resistance in microrregions of multipass welded joints of the AISI 316L alloy produced by MIG process with metal transfer in pulsed, short circuit and spray modes. The methodology consisted in reproducing welded samples with welding parameters applied in the industry for the modes of metallic transfer of interest, with detailed microstructural characterization of the molten zone of each welding condition. Then, electrochemical corrosion tests were carried out in microrregions of the welded joint in 3.5% NaCl solution, and the influence of the sigma phase on pitting corrosion was evaluated by immersion test in ferric chloride solution (6% FeCl3). The area exposed to the scanning was characterized by optical microscopy, scanning electron microscopy and chemical microanalysis. Pulsed mode welding resulted in a molten zone with a biphasic microstructure with the lowest volume fraction of delta ferrite, refined morphology and sigma phase free, providing the noblest performance in the corrosion tests, which occurred in the form of localized corrosion. The evaluation of the area exposed to the scan showed that, prior to pitting corrosion, the corrosion started in a localized manner, however, without preferential corrosion of one of the phases, a characteristic that gave better electrochemical parameters than those with selective corrosion of phases. This characteristic is attributed to the absence of the sigma phase in the microstructure of the molten zone of the pulsed mode. In the short-circuit mode, the eutectoid decomposition of the delta ferrite formed the secondary austenite and the sigma phase, the latter being mainly precipitated inside the delta ferrite. The corrosion morphology occurs in the initial phase as selective corrosion of phases, with preferential degradation of the secondary austenite and towards the ferrite delta, due to the embrittlement of this phase by the precipitation of the sigma phase inside. The selective degradation of the secondary austenite and delta ferrite phases causes localized damage to the passive film and, in these impoverished regions of chromium and molybdenum, occurs to pitting corrosion. The spray mode with the highest welding energy resulted in a coarse delta ferrite with narrow bands of austenite in the chamfer filling microrregion and at the root of the weld, with a high sigma phase index at these locations. The corrosive process of the molten zone was characterized by selective corrosion of the secondary austenite phase and towards the austenitic matrix, since the sigma phase covered the delta ferrite, making it the region of cathodic behavior between the galvanic pair formed between the austenite and ferrite delta phases. Selective corrosion of the austenitic matrix causes localized embrittlement of the passive film with consequent pitting corrosion. The study accomplished allows concluding that the pitting potential was reduced with the presence of sigma phase and phases associated with it, and precisely the pulsed mode obtained outstanding corrosion resistance due to the absence of the sigma phase in its microstructure.

Page generated in 0.06 seconds