Spelling suggestions: "subject:"fact solver""
1 |
Multiresolution weighted norm equivalences and applicationsBeuchler, Sven, Schneider, Reinhold, Schwab, Christoph 05 April 2006 (has links) (PDF)
We establish multiresolution norm equivalences in
weighted spaces <i>L<sup>2</sup><sub>w</sub></i>((0,1))
with possibly singular weight functions <i>w(x)</i>≥0
in (0,1).
Our analysis exploits the locality of the
biorthogonal wavelet basis and its dual basis
functions. The discrete norms are sums of wavelet
coefficients which are weighted with respect to the
collocated weight function <i>w(x)</i> within each scale.
Since norm equivalences for Sobolev norms are by now
well-known, our result can also be applied to
weighted Sobolev norms. We apply our theory to
the problem of preconditioning <i>p</i>-Version FEM
and wavelet discretizations of degenerate
elliptic problems.
|
2 |
Programmbeschreibung SPC-PM3-AdH-XX - Teil 1 / Program description of SPC-PM3-AdH-XX - part 1Meyer, Arnd 11 March 2014 (has links) (PDF)
Beschreibung der Finite Elemente Software-Familie SPC-PM3-AdH-XX
für: (S)cientific (P)arallel (C)omputing - (P)rogramm-(M)odul (3)D (ad)aptiv (H)exaederelemente.
Für XX stehen die einzelnen Spezialvarianten, die in Teil 2 detailliert geschildert werden.
Stand: Ende 2013
|
3 |
Programmbeschreibung SPC-PM3-AdH-XX - Teil 2 / Program description of SPC-PM3-AdH-XX - part 2Meyer, Arnd 20 November 2014 (has links) (PDF)
Beschreibung der Finite Elemente Software-Familie SPC-PM3-AdH-XX
für: (S)cientific (P)arallel (C)omputing - (P)rogramm-(M)odul (3)D (ad)aptiv (H)exaederelemente.
Für XX stehen die einzelnen Spezialvarianten, die in Teil 2 detailliert geschildert werden.
Stand: Ende 2013
|
4 |
Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equationsChavez, Gustavo Ivan 10 July 2017 (has links)
This dissertation introduces a novel fast direct solver and preconditioner for the solution of block tridiagonal linear systems that arise from the discretization of elliptic partial differential equations on a Cartesian product mesh, such as the variable-coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media.
The algorithm extends the traditional cyclic reduction method with hierarchical matrix techniques. The resulting method exposes substantial concurrency, and its arithmetic operations and memory consumption grow only log-linearly with problem size, assuming bounded rank of off-diagonal matrix blocks, even for problems with arbitrary coefficient structure. The method can be used as a standalone direct solver with tunable accuracy, or as a black-box preconditioner in conjunction with Krylov methods.
The challenges that distinguish this work from other thrusts in this active field are the hybrid distributed-shared parallelism that can demonstrate the algorithm at large-scale, full three-dimensionality, and the three stressors of the current state-of-the-art multigrid technology: high wavenumber Helmholtz (indefiniteness), high Reynolds convection (nonsymmetry), and high contrast diffusion (inhomogeneity).
Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST's Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.
|
5 |
Multiresolution weighted norm equivalences and applicationsBeuchler, Sven, Schneider, Reinhold, Schwab, Christoph 05 April 2006 (has links)
We establish multiresolution norm equivalences in
weighted spaces <i>L<sup>2</sup><sub>w</sub></i>((0,1))
with possibly singular weight functions <i>w(x)</i>≥0
in (0,1).
Our analysis exploits the locality of the
biorthogonal wavelet basis and its dual basis
functions. The discrete norms are sums of wavelet
coefficients which are weighted with respect to the
collocated weight function <i>w(x)</i> within each scale.
Since norm equivalences for Sobolev norms are by now
well-known, our result can also be applied to
weighted Sobolev norms. We apply our theory to
the problem of preconditioning <i>p</i>-Version FEM
and wavelet discretizations of degenerate
elliptic problems.
|
6 |
Fast High-order Integral Equation Solvers for Acoustic and Electromagnetic Scattering ProblemsAlharthi, Noha 18 November 2019 (has links)
Acoustic and electromagnetic scattering from arbitrarily shaped structures can be numerically characterized by solving various surface integral equations (SIEs). One of the
most effective techniques to solve SIEs is the Nyström method. Compared to other existing methods,the Nyström method is easier to implement especially when the geometrical discretization is non-conforming and higher-order representations of the geometry and unknowns are desired. However,singularities of the Green’s function are more difficult to”manage”since they are not ”smoothened” through the use of a testing function.
This dissertation describes purely numerical schemes to account for different orders of
singularities that appear in acoustic and electromagnetic SIEs when they are solved by a high-order Nyström method utilizing a mesh of curved discretization elements. These schemes make use of two sets of basis functions to smoothen singular integrals: the grid robust high-order Lagrange and the high-order Silvester-Lagrange interpolation basis functions. Numerical results comparing the convergence of two schemes are presented.
Moreover, an extremely scalable implementation of fast multipole method (FMM) is developed to efficiently (and iteratively) solve the linear system resulting from the discretization of the acoustic SIEs by the Nyström method. The implementation results in O(N log N) complexity for high-frequency scattering problems. This FMM-accelerated solver can handle N =2 billion on a 200,000-core Cray XC40 with 85% strong scaling efficiency.
Iterative solvers are often ineffective for ill-conditioned problems. Thus, a fast direct (LU)solver,which makes use of low-rank matrix approximations,is also developed. This solver relies on tile low rank (TLR) data compression format, as implemented in the hierarchical computations on many corearchitectures (HiCMA) library. This requires to taskify the underlying SIE kernels to expose fine-grained computations. The resulting asynchronous execution permit to weaken the artifactual synchronization points,while mitigating the overhead of data motion. We compare the obtained performance results of our TLRLU factorization against the state-of-the-art dense factorizations on shared
memory systems. We achieve up to a fourfold performance speedup on a 3D acoustic problem with up to 150 K unknowns in double complex precision arithmetics.
|
7 |
Programmbeschreibung SPC-PM3-AdH-XX - Teil 1Meyer, Arnd 11 March 2014 (has links)
Beschreibung der Finite Elemente Software-Familie SPC-PM3-AdH-XX
für: (S)cientific (P)arallel (C)omputing - (P)rogramm-(M)odul (3)D (ad)aptiv (H)exaederelemente.
Für XX stehen die einzelnen Spezialvarianten, die in Teil 2 detailliert geschildert werden.
Stand: Ende 2013:1 Allgemeine Vorbemerkungen
2 Grundstruktur
3 Datenstrukturen
4 Gesamtablauf
5 Parallelisierung
6 Die Grundvariante A3D_Original und ihre Bibliotheken
|
8 |
Programmbeschreibung SPC-PM3-AdH-XX - Teil 2Meyer, Arnd 20 November 2014 (has links)
Beschreibung der Finite Elemente Software-Familie SPC-PM3-AdH-XX
für: (S)cientific (P)arallel (C)omputing - (P)rogramm-(M)odul (3)D (ad)aptiv (H)exaederelemente.
Für XX stehen die einzelnen Spezialvarianten, die in Teil 2 detailliert geschildert werden.
Stand: Ende 2013:1 Vorbemerkungen
2 Probleme mit transversal-isotropem Material
3 Gleichungen vom Sattelpunktstyp
4 Probleme der Thermo-Elastizität
5 Nichtlineare Probleme der großen Deformationen
|
9 |
Multilevel adaptive cross approximation and direct evaluation method for fast and accurate discretization of electromagnetic integral equationsTamayo Palau, José María 17 February 2011 (has links)
El Método de los Momentos (MoM) ha sido ampliamente utilizado en las últimas décadas para la discretización y la solución de las formulaciones de ecuación integral que aparecen en muchos problemas electromagnéticos de antenas y dispersión. Las más utilizadas de dichas formulaciones son la Ecuación Integral de Campo Eléctrico (EFIE), la Ecuación Integral de Campo Magnético (MFIE) y la Ecuación Integral de Campo Combinada (CFIE), que no es más que una combinación lineal de las dos anteriores.Las formulaciones MFIE y CFIE son válidas únicamente para objetos cerrados y necesitan tratar la integración de núcleos con singularidades de orden superior al de la EFIE. La falta de técnicas eficientes y precisas para el cálculo de dichas integrales singulares a llevado a imprecisiones en los resultados. Consecuentemente, su uso se ha visto restringido a propósitos puramente académicos, incluso cuando tienen una velocidad de convergencia muy superior cuando son resuelto iterativamente, debido a su excelente número de condicionamiento.En general, la principal desventaja del MoM es el alto coste de su construcción, almacenamiento y solución teniendo en cuenta que es inevitablemente un sistema denso, que crece con el tamaño eléctrico del objeto a analizar. Por tanto, un gran número de métodos han sido desarrollados para su compresión y solución. Sin embargo, muchos de ellos son absolutamente dependientes del núcleo de la ecuación integral, necesitando de una reformulación completa para cada núcleo, en caso de que sea posible.Esta tesis presenta nuevos enfoques o métodos para acelerar y incrementar la precisión de ecuaciones integrales discretizadas con el Método de los Momentos (MoM) en electromagnetismo computacional.En primer lugar, un nuevo método iterativo rápido, el Multilevel Adaptive Cross Approximation (MLACA), ha sido desarrollado para acelerar la solución del sistema lineal del MoM. En la búsqueda por un esquema de propósito general, el MLACA es un método independiente del núcleo de la ecuación integral y es puramente algebraico. Mejora simultáneamente la eficiencia y la compresión con respecto a su versión mono-nivel, el ACA, ya existente. Por tanto, representa una excelente alternativa para la solución del sistema del MoM de problemas electromagnéticos de gran escala.En segundo lugar, el Direct Evaluation Method, que ha provado ser la referencia principal en términos de eficiencia y precisión, es extendido para superar el cálculo del desafío que suponen las integrales hiper-singulares 4-D que aparecen en la formulación de Ecuación Integral de Campo Magnético (MFIE) así como en la de Ecuación Integral de Campo Combinada (CFIE). La máxima precisión asequible -precisión de máquina se obtiene en un tiempo más que razonable, sobrepasando a cualquier otra técnica existente en la bibliografía.En tercer lugar, las integrales hiper-singulares mencionadas anteriormente se convierten en casi-singulares cuando los elementos discretizados están muy próximo pero sin llegar a tocarse. Se muestra como las reglas de integración tradicionales tampoco convergen adecuadamente en este caso y se propone una posible solución, basada en reglas de integración más sofisticadas, como la Double Exponential y la Gauss-Laguerre.Finalmente, un esfuerzo en facilitar el uso de cualquier programa de simulación de antenas basado en el MoM ha llevado al desarrollo de un modelo matemático general de un puerto de excitación en el espacio discretizado. Con este nuevo modelo, ya no es necesaria la adaptación de los lados del mallado al puerto en cuestión. / The Method of Moments (MoM) has been widely used during the last decades for the discretization and the solution of integral equation formulations appearing in several electromagnetic antenna and scattering problems. The most utilized of these formulations are the Electric Field Integral Equation (EFIE), the Magnetic Field Integral Equation (MFIE) and the Combined Field Integral Equation (CFIE), which is a linear combination of the other two. The MFIE and CFIE formulations are only valid for closed objects and need to deal with the integration of singular kernels with singularities of higher order than the EFIE. The lack of efficient and accurate techniques for the computation of these singular integrals has led to inaccuracies in the results. Consequently, their use has been mainly restricted to academic purposes, even having a much better convergence rate when solved iteratively, due to their excellent conditioning number. In general, the main drawback of the MoM is the costly construction, storage and solution considering the unavoidable dense linear system, which grows with the electrical size of the object to analyze. Consequently, a wide range of fast methods have been developed for its compression and solution. Most of them, though, are absolutely dependent on the kernel of the integral equation, claiming for a complete re-formulation, if possible, for each new kernel. This thesis dissertation presents new approaches to accelerate or increase the accuracy of integral equations discretized by the Method of Moments (MoM) in computational electromagnetics. Firstly, a novel fast iterative solver, the Multilevel Adaptive Cross Approximation (MLACA), has been developed for accelerating the solution of the MoM linear system. In the quest for a general-purpose scheme, the MLACA is a method independent of the kernel of the integral equation and is purely algebraic. It improves both efficiency and compression rate with respect to the previously existing single-level version, the ACA. Therefore, it represents an excellent alternative for the solution of the MoM system of large-scale electromagnetic problems. Secondly, the direct evaluation method, which has proved to be the main reference in terms of efficiency and accuracy, is extended to overcome the computation of the challenging 4-D hyper-singular integrals arising in the Magnetic Field Integral Equation (MFIE) and Combined Field Integral Equation (CFIE) formulations. The maximum affordable accuracy --machine precision-- is obtained in a more than reasonable computation time, surpassing any other existing technique in the literature. Thirdly, the aforementioned hyper-singular integrals become near-singular when the discretized elements are very closely placed but not touching. It is shown how traditional integration rules fail to converge also in this case, and a possible solution based on more sophisticated integration rules, like the Double Exponential and the Gauss-Laguerre, is proposed. Finally, an effort to facilitate the usability of any antenna simulation software based on the MoM has led to the development of a general mathematical model of an excitation port in the discretized space. With this new model, it is no longer necessary to adapt the mesh edges to the port.
|
10 |
Fast Numerical Techniques for Electromagnetic Problems in Frequency DomainNilsson, Martin January 2003 (has links)
The Method of Moments is a numerical technique for solving electromagnetic problems with integral equations. The method discretizes a surface in three dimensions, which reduces the dimension of the problem with one. A drawback of the method is that it yields a dense system of linear equations. This effectively prohibits the solution of large scale problems. Papers I-III describe the Fast Multipole Method. It reduces the cost of computing a dense matrix vector multiplication. This implies that large scale problems can be solved on personal computers. In Paper I the error introduced by the Fast Multipole Method is analyzed. Paper II and Paper III describe the implementation of the Fast Multipole Method. The problem of computing monostatic Radar Cross Section involves many right hand sides. Since the Fast Multipole Method computes a matrix times a vector, iterative techniques are used to solve the linear systems. It is important that the solution time for each system is as low as possible. Otherwise the total solution time becomes too large. Different techniques for reducing the work in the iterative solver are described in Paper IV-VI. Paper IV describes a block Quasi Minimal Residual method for several right hand sides and Sparse Approximate Inverse preconditioner that reduce the number of iterations significantly. In Paper V and Paper VI a method based on linear algebra called the Minimal Residual Interpolation method is described. It reduces the work in an iterative solver by accurately computing an initial guess for the iterative method. In Paper VII a hybrid method between Physical Optics and the Fast Multipole Method is described. It can handle large problems that are out of reach for the Fast Multipole Method.
|
Page generated in 0.0984 seconds