• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue properties of cut and welded high strength steels : Quality aspects in design and production

Stenberg, Thomas January 2016 (has links)
This doctoral thesis concerns fatigue of welded structures. Welding is one of the world’s most common joining methods and it is frequently used in several structural applications in many fields. Some examples are construction vehicles, loader cranes, trucks, busses, forestry and agricultural machines, bridges and ships. Since these structures are subjected to repeated loading, fatigue is the most common cause of failure. A novel numerical algorithm has been developed which assesses the welded surface and calculates and quantifies weld quality parameters and the presence of defects which are critical in fatigue applications. The algorithm is designed for implementation in serial production. It will provide robust and reliable feedback on the quality being produced, which is essential if high strength steels are utilized. Two welding procedures which can increase the weld quality in as welded conditions have been assessed. These procedures utilize welding in different positions and pendling techniques, which can be accomplished using the existing welding equipment. It was found that by using these methods, the fatigue strength can be increased compared to normal weld quality. Furthermore, two fatigue assessment methods ability to account for increased weld quality in low cycle and high cycle fatigue applications has been studied. One of these methods showed sufficient accuracy in predicting the fatigue strength with small scatter and also account for increased weld quality. When implementing thinner high strength steels, the overall stress level in the structure increase. Therefore, other locations such as the steel cut edges may become critical for fatigue failure unless they are not designed and manufactured with the same quality as the welded joint. The influence of surface quality on cut edges was studied and the fatigue strength was estimated using international standards and a fatigue strength model for cut edges. / <p>QC 20160613</p> / WIQ / LIGHTSTRUCT / ONWELD
2

TRADEOFF ANALYSIS FOR HELICAL GEAR REDUCTION UNITS

NAIK, AMIT R. January 2005 (has links)
No description available.
3

Assessment by kriging of the reliability of structures subjected to fatigue stress / Evaluation par krigeage de la fiabilité des structures sollicitées en fatigue

Echard, Benjamin 25 September 2012 (has links)
Les méthodes traditionnelles de dimensionnement à la fatigue s’appuient sur l’utilisation de coefficients dits de “sécurité” dans le but d’assurer l’intégrité de la structure en couvrant les incertitudes inhérentes à la fatigue. Ces méthodes de l’ingénieur ont le mérite d’être simples d’application et de donner des solutions heureusement satisfaisantes du point de vue de la sécurité. Toutefois, elles ne permettent pas au concepteur de connaître la véritable marge de sécurité de la structure et l’influence des différents paramètres de conception sur la fiabilité. Les approches probabilistes sont envisagées dans cette thèse afin d’acquérir ces informations essentielles pour un dimensionnement optimal de la structure vis-à-vis de la fatigue. Une approche générale pour l’analyse probabiliste en fatigue est proposée dans ce manuscrit. Elle s’appuie sur la modélisation des incertitudes (chargement, propriétés du matériau, géométrie, courbe de fatigue) et vise à quantifier le niveau de fiabilité de la structure étudiée pour un scénario de défaillance en fatigue. Les méthodes classiques de fiabilité nécessitent un nombre important d’évaluations du modèle mécanique de la structure et ne sont donc pas envisageables lorsque le calcul du modèle est coûteux en temps. Une famille de méthodes appelée AK-RM (Active learning and Kriging-based Reliability Methods) est précisément proposée dans ces travaux de thèse afin de résoudre le problème de fiabilité avec un minimum d’évaluations du modèle mécanique. L’approche générale est appliquée à deux cas-tests fournis par SNECMA dans le cadre du projet ANR APPRoFi. / Traditional procedures for designing structures against fatigue are grounded upon the use of so-called safety factors in an attempt to ensure structural integrity while masking the uncertainties inherent to fatigue. These engineering methods are simple to use and fortunately, they give satisfactory solutions with regard to safety. However, they do not provide the designer with the structure’s safety margin as well as the influence of each design parameter on reliability. Probabilistic approaches are considered in this thesis in order to acquire this information, which is essential for an optimal design against fatigue. A general approach for probabilistic analysis in fatigue is proposed in this manuscript. It relies on the modelling of the uncertainties (load, material properties, geometry, and fatigue curve), and aims at assessing the reliability level of the studied structure in the case of a fatigue failure scenario. Classical reliability methods require a large number of calls to the mechanical model of the structure and are thus not applicable when the model evaluation is time-demanding. A family of methods named AK-RM (Active learning and Kriging-based Reliability methods) is proposed in this research work in order to solve the reliability problem with a minimum number of mechanical model evaluations. The general approach is applied to two case studies submitted by SNECMA in the frame of the ANR project APPRoFi.
4

Monotonic and Fatigue Performance of RC Beams Strengthened with Externally Post-Tensioned CFRP Tendons

El Refai, Ahmed January 2007 (has links)
External post-tensioning is an attractive technique for strengthening reinforced concrete structures because of its ability to actively control stresses and deflections, speed of installation, minimum interruption for the existing structure, and ease of inspection under service conditions. However, external prestressing implies exposing the tendons to the environment outside the concrete section, which may lead to corrosion in steel tendons. Therefore, the interest in using fiber reinforced polymer (FRP) tendons, which are corrosion resistant, has increased. The present work investigated, experimentally and analytically, the flexural performance of reinforced concrete beams strengthened with externally post-tensioned Carbon FRP (CFRP) tendons, under monotonic and fatigue loadings. Initially, tensile fatigue tests were carried out on CFRP tendon-anchor assemblies to assess their response under repeated cyclic loads, before implementing them in the beam tests. New wedge-type anchors (Waterloo anchors) were used in gripping the CFRP specimens. The assemblies exhibited excellent fatigue performance with no premature failure occurring at the anchorage zone. The fatigue tests suggested a fatigue limit of a stress range of 10% of the tendon ultimate capacity (approximately 216 MPa). Monotonic and fatigue experiments on twenty-eight beams (152x254x3500 mm) were then undertaken. Test parameters included the tendon profile (straight and double draped), the initial loading condition of the beam prior to post-tensioning (in-service and overloading), the partial prestressing ratio (0.36 and 0.46), and the load ranges applied to the beam during the fatigue life (39% to 76% of the yield load). The CFRP tendons were post-tensioned at 40% of their ultimate capacity. The monotonic tests of the post-tensioned beams suggested that overloading the beam prior to post-tensioning increased the beam deflections and the strains developed in the steel reinforcing bars at any stage of loading. However, overloading had no significant effect on the yield load of the strengthened beam and the mode of failure at ultimate. It also had no discernable effect on the increase in the tendon stress at yielding. The maximum increase in the CFRP stress at yield load was approximately 20% of the initial post-tensioning stress, for the in-service and overloaded beams. A very good performance of the strengthened beams was observed under fatigue loading. The fatigue life of the beams was mainly governed by the fatigue fracture of the internal steel reinforcing bars at a flexural crack location. Fracture of the bars occurred at the root of a rib where high stress concentration was likely to occur. No evidence of wear or stress concentration were observed at the deviated points of the CFRP tendons due to fatigue. The enhancement in the fatigue life of the strengthened beams was noticeable at all load ranges applied. Post-tensioning considerably decreased the stresses in the steel reinforcing bars and, consequently, increased the fatigue life of the beams. The increase in the fatigue life was slightly affected by the loading history of the beams. At the same load range applied to the beam, increasing the amount of the steel reinforcing bars for the same post-tensioning level decreased the stress range in the bars and significantly increased the fatigue life of the strengthened beams. In the analytical study, a monotonic model that predicts the non-linear flexural response of the CFRP post-tensioned beams was developed and implemented into a computer program. The model takes into account the loading history of the strengthened beams prior to post-tensioning (in-service and overloading). Good agreement was obtained between the measured and the predicted monotonic results. A strain-life based fatigue model was proposed to predict the fatigue life of the CFRP post-tensioned beams. The model takes into consideration the stress-strain history at the stress raisers in the steel bars. It accounts for the inelastic deformation occurring at the ribs during cycling and the resulting changes in the local mean stresses induced. Good agreement between the experimental and predicted fatigue results was observed. A step-by-step fatigue design approach is proposed for the CFRP externally post-tensioned beams. General conclusions of the study and recommendations of future work are given.
5

Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden

Mansour, Masis, Frid, Alexander, Bakr, Souzan January 2020 (has links)
Purpose: The purpose of this study has been to investigate the essentials of being able to incorporate high-strength steels (460 MPa and beyond) for structural elements in buildings. As of late, structural steels with a yield point of 355 MPa have been considered standard and have been for the past decade. One of the problems that occur with an increased yield point, is that deflection of structural elements increases, as the Young’s modulus does not increase with increasing yield point. Welding, stability, behavior during fire, and fatigue are also subjects of interest. Method: The study was conducted through several courses of action: a literature review covering the latest research of high-strength steels within the sought-after area of interest, followed by calculations of a truss resting on two columns, being subject to bending moment and compressive force, in both 355 MPa and 700 MPa, in order to review the differences that occur and how they can be counteracted. Lastly, interviews were carried out, where structural engineers gave their thoughts and experiences on the matter at hand. Results: The results show that welding is one of the largest hurdles with being able to utilize high-strength structural steels, though there are newer, more promising methods of welding which can be used, such as electron beam welding. Regarding structural integrity and buckling of structural elements, high-strength steel can be used for trusses, where the structural members are mainly being pulled, opposed to being subject to compressive force. This was shown with the performed calculations, during the interviews, and by the literature overview. Conclusions: The general conclusions of the study is that for welding, further research, education, and training is required for all concerned parts, such as the structural engineers and the on-site welders, which will increase the knowledge regarding how welding of high-strength steels should be performed, but also raise awareness about newer and more modern methods. Fire behavior for high-strength steels are a higher risk factor that should be treated and executed with higher degrees of caution by engineers. Reduction factors for fire affected steel construction elements should be corrected to fit the behavior for high-strength steels as well, as they differ from the current Eurocode 3 for lower class steels. Problems with instability can be counteracted by utilizing the steel in pulled structural members, such as trusses and struts. Lastly, for high-strength steels to be used more widely, structural engineers and manufacturers need to work together for any of the two to profit, as low production rates are costly.
6

Monotonic and Fatigue Performance of RC Beams Strengthened with Externally Post-Tensioned CFRP Tendons

El Refai, Ahmed January 2007 (has links)
External post-tensioning is an attractive technique for strengthening reinforced concrete structures because of its ability to actively control stresses and deflections, speed of installation, minimum interruption for the existing structure, and ease of inspection under service conditions. However, external prestressing implies exposing the tendons to the environment outside the concrete section, which may lead to corrosion in steel tendons. Therefore, the interest in using fiber reinforced polymer (FRP) tendons, which are corrosion resistant, has increased. The present work investigated, experimentally and analytically, the flexural performance of reinforced concrete beams strengthened with externally post-tensioned Carbon FRP (CFRP) tendons, under monotonic and fatigue loadings. Initially, tensile fatigue tests were carried out on CFRP tendon-anchor assemblies to assess their response under repeated cyclic loads, before implementing them in the beam tests. New wedge-type anchors (Waterloo anchors) were used in gripping the CFRP specimens. The assemblies exhibited excellent fatigue performance with no premature failure occurring at the anchorage zone. The fatigue tests suggested a fatigue limit of a stress range of 10% of the tendon ultimate capacity (approximately 216 MPa). Monotonic and fatigue experiments on twenty-eight beams (152x254x3500 mm) were then undertaken. Test parameters included the tendon profile (straight and double draped), the initial loading condition of the beam prior to post-tensioning (in-service and overloading), the partial prestressing ratio (0.36 and 0.46), and the load ranges applied to the beam during the fatigue life (39% to 76% of the yield load). The CFRP tendons were post-tensioned at 40% of their ultimate capacity. The monotonic tests of the post-tensioned beams suggested that overloading the beam prior to post-tensioning increased the beam deflections and the strains developed in the steel reinforcing bars at any stage of loading. However, overloading had no significant effect on the yield load of the strengthened beam and the mode of failure at ultimate. It also had no discernable effect on the increase in the tendon stress at yielding. The maximum increase in the CFRP stress at yield load was approximately 20% of the initial post-tensioning stress, for the in-service and overloaded beams. A very good performance of the strengthened beams was observed under fatigue loading. The fatigue life of the beams was mainly governed by the fatigue fracture of the internal steel reinforcing bars at a flexural crack location. Fracture of the bars occurred at the root of a rib where high stress concentration was likely to occur. No evidence of wear or stress concentration were observed at the deviated points of the CFRP tendons due to fatigue. The enhancement in the fatigue life of the strengthened beams was noticeable at all load ranges applied. Post-tensioning considerably decreased the stresses in the steel reinforcing bars and, consequently, increased the fatigue life of the beams. The increase in the fatigue life was slightly affected by the loading history of the beams. At the same load range applied to the beam, increasing the amount of the steel reinforcing bars for the same post-tensioning level decreased the stress range in the bars and significantly increased the fatigue life of the strengthened beams. In the analytical study, a monotonic model that predicts the non-linear flexural response of the CFRP post-tensioned beams was developed and implemented into a computer program. The model takes into account the loading history of the strengthened beams prior to post-tensioning (in-service and overloading). Good agreement was obtained between the measured and the predicted monotonic results. A strain-life based fatigue model was proposed to predict the fatigue life of the CFRP post-tensioned beams. The model takes into consideration the stress-strain history at the stress raisers in the steel bars. It accounts for the inelastic deformation occurring at the ribs during cycling and the resulting changes in the local mean stresses induced. Good agreement between the experimental and predicted fatigue results was observed. A step-by-step fatigue design approach is proposed for the CFRP externally post-tensioned beams. General conclusions of the study and recommendations of future work are given.

Page generated in 0.0738 seconds