• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 13
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Compartmentalization and energy channels within the soil animal food web investigated by stable isotope (13C and 15N) and fatty acid analyses / Kompartimentierung und Energie-Kanäle im Bodentier-Nahrungsnetz untersucht mittels Isotopen- und Fettsäuremuster-Analyse

Maraun, Melanie Mira 09 February 2012 (has links)
No description available.
12

Seasonal and colony differences in the foraging ecology of New Zealand fur seals (Arctocephalus forsteri).

Baylis, Alastair M.M. January 2008 (has links)
The New Zealand fur seal (Arctocephalus forsteri) is the most abundant fur seal species in the Australian-New Zealand region. Approximately 85 % of Australia’s population of New Zealand fur seals reside in the state of South Australia. As a result of their abundance and size, it has been estimated that the New Zealand fur seal population in South Australia consumes the greatest biomass of resources of all marine mammal and seabird species. However, despite the importance of New Zealand fur seals as top predators, our understanding of their foraging ecology in South Australia is limited. In order to better understand the habitat utilized and the diet of New Zealand fur seals, this study explores the foraging ecology of lactating seals from four primary colonies in South Australia, which account for ~ 78 % of the Australian population. These colonies are Cape Gantheaume (36о04’S, 137о27’E) and Cape du Couedic (36о03’S, 136о42’E) on Kangaroo Island; North Neptune Island (35о13’S, 136о03’E) and Liguanea Island (34о59’S, 135о37’E). I start this study by assessing the seasonal variation in foraging location and dive behaviour of lactating New Zealand fur seals from Cape Gantheaume. 18 seals were fitted with satellite transmitters and time depth recorders (TDRs). The presence of thermoclines (derived from TDRs), were used as a surrogate measure of upwelling activity in continental shelf habitats. During the austral autumn 80 % of lactating fur seals foraged on the continental shelf (114 ± 44 km from the colony), in a region associated with a seasonal coastal upwelling system, the Bonney upwelling. In contrast, during winter months seals predominantly foraged in oceanic waters (62 %), in a region associated with the Subtropical Front (460 ± 138 km from the colony). Results suggested that lactating New Zealand fur seals shift their foraging location from continental shelf to oceanic habitats, in response to a seasonal decline in continental shelf productivity, attributed to the cessation of the Bonney upwelling in autumn. To study inter-colony differences in foraging locations, 21 New Zealand fur seals were satellite tracked from four colonies within close proximity (46 km – 200km apart). Seals initiated foraging trips on a colony-specific bearing (Cape Gantheaume 141 ± 33º, Cape du Couedic 186 ± 12º, North Neptune Island 200 ± 23º and Liguanea Island 234 ± 69º), and recorded little overlap between colony-specific foraging areas. The distribution of colony-specific foraging grounds appeared to be influenced by the proximity of colonies to predictable local upwelling features, as well as a distant oceanic frontal zone, the Subtropical Front. Foraging site fidelity and route-choice was further assessed by comparing site fidelity between continental shelf and oceanic habitats. Data from 31 lactating females, satellite tracked over 107 consecutive foraging trips indicated that females foraging on the continental shelf recorded a significantly greater overlap in foraging area between consecutive foraging routes, when compared to females that foraged in oceanic waters (55.9 ± 20.4 % and 13.4 ± 7.6 %, respectively). Findings suggest that seals learn the direction of travel to a predictable foraging region, and initiate a foraging trip on that bearing. However, actual foraging routes are likely to be influenced by a number of factors including previous foraging trip experience and prey encounter rate, which is related to prey density and the spatial scale of the patch exploited. The final chapter integrates scat analysis with milk fatty acid (FA) analysis to investigate dietary differences between continental shelf and oceanic waters. Milk FA composition was determined for 29 satellite-tracked fur seals, that were known to forage in either shelf or oceanic habitats. Based on FA compositions, I predicted the likelihood that milk samples collected at random (n = 131) represented individual seals having foraged either on the continental shelf or in distant oceanic waters. FA analysis and satellite tracking results contrasted with scat analyses, from which only 6 % of scats by frequency of occurrence contained prey remains from oceanic waters. The results suggest that scats were biased toward females foraging on the continental shelf. This study highlights the importance of two predictable ocean features utilised by New Zealand fur seals; (1) a nearby and seasonally predictable coastal upwelling system, the Bonney upwelling and; (2) a distant but permanent oceanic front, the Subtropical Front. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1347312 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Studies, 2008
13

Effects of cow urine and its constituents on soil microbial populations and nitrous oxide emissions

Bertram, Janet January 2009 (has links)
New Zealand’s 5.3 million strong dairy herd returns approximately 106 million litres of urine to pasture soils daily. The urea in that urine is rapidly hydrolysed to ammonium (NH₄⁺), which is then nitrified, with denitrification of nitrate (NO₃⁻) ensuing. Nitrous oxide (N₂O), a potent greenhouse gas (GHG), is produced via nitrification and denitrification, which are enzyme-catalysed processes mediated by soil microbes. Thus microbes are linked intrinsically to urine patch chemistry. However, few previous studies have investigated microbial dynamics in urine patches. Therefore the objective of these four experiments was to investigate the effects on soil microbial communities of cow urine deposition. Methods used included phospholipid fatty acid (PLFA) analyses of microbial community structure and microbial stress, dehydrogenase activity (DHA) assays measuring microbial activity, and headspace gas sampling of N₂O, ammonia (NH₃) and carbon dioxide (CO₂) fluxes. Experiment 1, a laboratory study, examined the influence of soil moisture and urinary salt content on the microbial community. Both urine application and high soil moisture increased microbial stress, as evidenced by significant changes in PLFA trans/cis and iso/anteiso ratios. Total PLFAs and DHA showed a short-term (< 1 week) stimulatory effect on microbes after urine application. Mean cumulative N₂O-N fluxes were 2.75% and 0.05% of the nitrogen (N) applied, from the wet (70% WFPS) and dry (35% WFPS) soils, respectively. Experiment 2, a field trial, investigated nutrient dynamics and microbial stress with plants present. Concentrations of the micronutrients, copper, iron and molybdenum, increased up to 20-fold after urine application, while soil phosphorus (P) concentrations decreased from 0.87 mg kg ⁻¹ to 0.48 mg kg⁻¹. Plant P was also lower in urine patches, but total PLFAs were higher, suggesting that microbes had utilised the available nutrients. Microbial stress again resulted from urine application but, in contrast to experiment 1, the fungal biomass recovered after its initial inhibition. Studies published during the course of this thesis reported that hippuric acid (HA) and its hydrolysis product benzoic acid (BA) significantly reduced N₂O-N emissions from synthetic cow urine, thus experiment 3 investigated this effect using real cow urine. Cumulative N₂O-N fluxes were 16.8, 5.9 and 4.7% of N applied for urine (U) alone, U+HA and U+BA, respectively. Since NH₃-N volatilisation remained unchanged, net gaseous N emissions were reduced. Trends in total PLFAs and microbial stress were comparable to experiment 1 results. Experiment 4 studied HA effects at different temperatures and found no inhibition of N₂O-N fluxes from HA-amended urine. However, mean cumulative N₂O-N fluxes were reduced from 7.6% of N applied at 15–20°C to 0.2% at 5–10°C. Total cumulative N emissions (N₂O-N + NH₃-N) were highest at 20°C (17.5% of N applied) and lowest at 10°C (9.8% of N applied). Microbial activity, measured as potential DHA, increased with increasing temperature. This work has clearly shown that the stimulation and inhibition of the soil microbial community by urine application are closely linked to soil chemistry and have significant impacts not only on soil nutrient dynamics but also on N₂O-N emissions and their possible mitigation.

Page generated in 0.0836 seconds