• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Earthquake Petrology: Linking Fault-Related Deformation to the Earthquake Cycle

Prante, Mitchell R. 01 May 2013 (has links)
Faults have a controlling influence on a variety of geologic processes includingfluid flow, the mechanical behavior of the crust, and seismicity. The geologic sciences have long recognized that faults generate earthquakes; however, few indicators of ancient earthquakes exist in fault-zones. This dissertation documents several indicators for the preservation of ancient earthquakes in fault-zones including frictional melt (pseudotachylyte), highly-polished fault slip surfaces, and hydrothermal alteration. These deformation products result from rapid generation of frictional heat during earthquakes.This dissertation also focuses on the seismic potential of continental low-angle normal faults (LANF). We document the preservation of voluminous pseudotachylyte along a LANF suggesting that the fault repeatedly nucleated large earthquakes. Additionally, a synthesis of reported occurrences of LANF pseudotachylyte indicates that LANF seismicity is common during extension. This has important implication for the mechanics and evolution of LANFs and for the assessment of seismic hazards.We also present a little used, high resolution, and low-cost 3D range camera for use in geolgy. The KinectTM is a 3D infrared range camera that can be used to collect high- resolution (± 1 mm), 3D data in both field and laboratory settings. We describe the use of the KinectTM in geologic appications and recommend more widespread use.
2

Spatiotemporal Evolution of Pleistocene and Late Oligocene-Early Miocene Deformation in the Mecca Hills, Southernmost San Andreas Fault Zone

Moser, Amy C. 01 May 2017 (has links)
Seismogenically active faults (those that produce earthquakes) are very complex systems that constantly change through time. When an earthquake occurs, the rocks surrounding a fault (the “fault rocks”) become altered or damaged. Studying these fault rocks directly can inform what processes operated in the fault and how the fault evolved in space and time. Examining these key aspects of faults helps us understand the earthquake hazards of active fault systems. The Mecca Hills, southern California, consist of a set of hills adjacent to the southernmost San Andreas Fault. The topography is related to motion on the San Andreas fault, which poses the largest seismic hazard in the lower forty-eight United States. The southernmost San Andreas fault, and the Mecca Hills study location may be reaching the end of its earthquake cycle and is due for a major, potentially catastrophic earthquake. The seismic hazards of the region, coupled with its proximity to major populated areas (Coachella Valley, Los Angeles Basin) make it a critical research area to understand fault zone evolution and the protracted history of fault development. The goal of this thesis was to directly examine the fault rocks in the Mecca Hills to understand how San Andreas-related faults in this area have evolved and behaved through time. This study integrates a variety of field and laboratory techniques to characterize the structural, geochemical, and thermal properties of the Mecca Hills fault rocks. The results herein document two distinct phases of deformation in the rocks exposed in the Mecca Hills, one around 24 million years ago and the other in the last one million years. This more recent phase of deformation is characterized by fault block exhumation and fluid flow in the fault zones, likely related to changing dynamics of the southernmost San Andreas Fault system. The older event informs how and when these rocks came close to Earth’s surface before the San Andreas Fault initiated.
3

Fault-related fracture systems in the Cambrian Eriboll Formation, Northwest Scotland : a field and petrographic study of a tight gas sandstone analog

Hargrove, Peter Gregory 24 January 2011 (has links)
Lower Cambrian Eriboll Formation sandstones of the Ardvreck Group that crop out in the Hebridean foreland west of the Paleozoic Moine Thrust Zone (MTZ) in the Northwest Highlands of Scotland contain five sets of opening-mode fractures with varying degrees of quartz deposits (cement) and topographically prominent but small displacement (mostly less than 10 m) northeast-striking faults. The faults crosscut and in some places displace the MTZ. I interpret these faults to post-date the MTZ and consider them to be late structures (kinematically unrelated to MTZ emplacement). Sparse slip lineations on fault surfaces and offset patterns are evidence for strike-slip to oblique slip. Using geologic mapping I show that relative to their lateral and vertical extents, the faults display small amounts of offset (less than 5 to 10 m). My research documented the patterns and petrology of fractures in a well exposed section of the foreland, documented for the first time fracture patterns adjacent to and within the post-MTZ fault zones, and proposes an account of how fault and fracture patterns developed and their probable effects on fluid flow. Fractures are barren (joints), partially filled (quartz lined), or completely filled (veins). Older fracture sets are typically completely filled, whereas younger sets may be lined with a thin veneer of quartz cement or are barren. Listed in order from oldest to youngest fractures containing quartz strike north, NW to WNW, NE, west, and north (sets A through E respectively). Previously proposed relative ages of the sets were confirmed using crosscutting relationships and preferred orientations of macro- and microfractures (Laubach and Diaz-Tushman, 2009). This study focuses on late northeast-striking fractures (set C) which I interpret to be related to the formation of the small-offset faults. Many of the attributes of late fractures and faults in the Eriboll Formation resemble those found in core from highly quartz cemented sandstone natural gas reservoirs ("tight gas sandstones"). I demonstrate that the well exposed fracture patterns I documented are good analogs for tight gas sandstones, by investigating fracture characteristics such as network configurations and connectivity, fracture intensity (abundance), fracture scaling, fracture length and spacing, and the degree of quartz cement deposits in fractures and cataclastic fault rock. Many of the narrow macroscopic fractures and microfractures I documented using CL methods contain varying amounts of quartz deposits. The excellent preservation of Eriboll outcrops is probably a manifestation of little or no fracture pore space preservation in many of the numerous fractures that are apparent in outcrop. Set C fracture abundance is not distributed in a uniform envelope (or "halo") around the late faults. Using scanlines, I show that set C fracture distribution is heterogeneous and highly variable over short lateral distances (tens of centimeters to meters). I also investigate wing crack assemblages (secondary opening-mode fractures) that are locally associated with set C fractures. The assemblages accommodate small amounts of the distributed displacement (a few millimeters) adjacent to fault zones and are locally responsible for increased amounts of fracture connectivity by linking neighboring fractures. Variations in fracture pattern complexity appears to be related to the presence (or absence) of wing crack assemblages. Localized wing crack development on closely spaced, en echelon set C fractures also leads to precursory development of fragmented lozenges of highly deformed volumes of rock (damage zones) that resemble geometries similar to those seen in preserved Eriboll fault cores. Fault-related deformation in the Eriboll Formation is markedly different than that in the underlying Late Proterozoic Torridonian Applecross Formation (subarkose fluvial sandstone), which is characterized by simple halos fault-related fracture arrays surrounding the same late (post-MTZ) faults. In addition to composition, the Eriboll and Applecross differ in mechanical layer thickness (centimeters versus > tens of meters), mechanical properties (high versus low brittleness), and greater propensity for fractures to be filled with quartz cement in Eriboll sandstones owing to quartz cement growth being impaired by the abundance of non-quartz substrate (feldspar and clay minerals) along fracture walls in the Applecross Formation. Although the Eriboll sandstones are more highly fractured than the older Applecross sandstones, Eriboll fractures are more prone to be filled by quartz cement. In this thesis I also report previously unrecognized early (set A; pre-MTZ) minor normal faults, sandstone petrography and rock mechanical properties of selected Eriboll sandstone samples, and the influence of fractures on the glacial geomorphology of the area. I also describe a previously unmapped igneous dyke. I describe previously unrecognized vugs that are partly strata bound and partly localized along fractures. The attributes of these vugs and a review of the literature suggests that these features could represent evidence of pre-glacial silici-karst in Eriboll quartzites. / text
4

Insights into Contractional Fault-Related Folding Processes Based on Mechanical, Kinematic, and Empirical Studies

Hughes, Amanda 17 September 2012 (has links)
This dissertation investigates contractional fault-related folding, an important mechanism of deformation in the brittle crust, using a range of kinematic and mechanical models and data from natural structures. Fault-related folds are found in a wide range of tectonic settings, including mountain belts and accretionary prisms. There are several different classes of fault-related folds, including fault-bend, fault-propagation, shear-fault-bend, and detachment folds. They are distinguished by the geometric relationships between the fold and fault shape, which are driven by differences in the nature of fault and fold growth. The proper recognition of the folding style present in a natural structure, and the mechanical conditions that lead the development of these different styles, are the focus of this research. By taking advantage of recent increases in the availability of high-quality seismic reflection data and computational power, we seek to further develop the relationship between empirical observations of fault-related fold geometries and the kinematics and mechanics of how they form. In Chapter 1, we develop an independent means of determining the fault-related folding style of a natural structure through observation of the distribution of displacement along the fault. We derive expected displacements for kinematic models of end-member fault-related folding styles, and validate this approach for natural structures imaged in seismic reflection data. We then use this tool to gain insight into the deformational history of more complex structures. In Chapter 2, we explore the mechanical and geometric conditions that lead to the transition between fault-bend and fault-propagation folds. Using the discrete element modeling (DEM) method, we investigate the relative importance of factors such as fault dip, mechanical layer strength and anisotropy, and fault friction on the style of structure that develops. We use these model results to gain insight into the development of transitional fault-related folds in the Niger Delta. In Chapter 3, we compare empirical observations of fault-propagation folds with results from mechanical models to gain insight into the factors that contribute to the wide range of structural geometries observed within this structural class. We find that mechanical layer anisotropy is an important factor in the development of different end-member fault-propagation folding styles. / Earth and Planetary Sciences
5

Kinematic and Tectonic Significance of the Fold- and Fault- Related Fracture Systems in the Zagros Mountains, Southern Iran

Mobasher, Katayoun 02 May 2007 (has links)
Enhancement methods applied on various satellite images (ASTER, ETM and RADAR SAT-1) facilitated the identification and mapping of tectonic fractures in the Zagros fold-and-thrust belt in southwest Iran. The results of the fracture analysis on these enhanced images reveal four principal fracture sets within each fold structure: (i) an axial set defined by normal faults oriented parallel to the fold axial trace, (ii) a cross-axial, extensional fracture set oriented perpendicular to the fold axial trace, (iii) and two sets of intersecting shear fractures, oriented at an acute angle to the cross-axial set. Study of the enhanced images also revealed five fracture sets along the Kazerun fault zone: (i) Riedel R- and R'-shear fracture sets, (ii) extensional T fracture set oriented at a high angle to the trace of the main Kazerun fault, (iii) oblique, synthetic P-shear fracture set, at a low angle to the trace of the main Kazerun fault, and (iv) synthetic Y-shear displacement fracture set, oriented sub-parallel to the main trace of the fault. The estimated mean azimuths of the shortening that developed the fold- and fault-related fracture systems are remarkably close, and are oriented perpendicular to the general NW-SE trend of the Zagros fold-and-thrust belt. The sampling and analysis of the fold- and fault-related fracture systems were done in a GIS environment. This study shows that an analysis of enhanced satellite images can reveal significant information on the deformation style, timing, and kinematics of the Zagros fold-and-thrust belt. This study suggests that the Zagros orogenic belt, which has mainly been forming since Miocene, due to the convergence of the Iranian and Arabian subplates, has evolved both by thin- and thick-skinned tectonics. Reconfiguration of the Precambrian basement blocks, and the ensuing slip and rotation along the Precambrian faults during the Zagros orogeny, have deformed the folds, and redistributed the fold-related fractures through rigid-body rotation.
6

An?lise estrutural da deforma??o cenoz?ica na Bacia de Cumuruxatiba (BA)

Ferreira, Talles Souza 03 September 2010 (has links)
Made available in DSpace on 2015-03-13T17:08:29Z (GMT). No. of bitstreams: 1 TallesSF_DISSERT_1-74.pdf: 3503129 bytes, checksum: 43d4d5f0a963aecc3dec332abad3bc2d (MD5) Previous issue date: 2010-09-03 / The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons / A Bacia de Cumuruxatiba est? localizada no extremo sul da costa do Estado da Bahia, no Nordeste do Brasil. Esta bacia foi formada em ambiente distensional, com rifteamento e posterior fase termal durante o Neocomiano at? final do Cret?ceo. Durante o Cenoz?ico ocorre o magmatismo de Abrolhos na bacia com picos durante o Paleoceno e Eoceno. Neste per?odo ocorre uma invers?o cinem?tica na bacia representada por dobras relacionadas a falhas reversas. Restaura??es estruturais regionais de se??es s?smicas 2D, revelaram que a maior parte da deforma??o est? concentrada no inicio do Cenoz?ico com o pico no Eoceno Inferior. O per?odo p?s-Eoceno ? marcado pela diminui??o da taxa de deforma??o at? o presente. A modelagem estrutural 3D revelou uma frente de dobras (de orienta??o E-W variando para NE-SW) acomodando a deforma??o entre os altos vulc?nicos de Royal Charlotte e Sulphur Minerva. Os derrames vulc?nicos causaram uma sobrecarga diferencial nas bordas da bacia que serviu de gatilho para atua??o da halocinese, como j? demonstrado em modelagens f?sicas na literatura. Consequentemente, a deforma??o tende a ser maior na bordas da bacia. As rochas vulc?nicas ocorrem principalmente como estruturas concordantes (sills) nos sedimentos sin-tect?nicos revelando uma deposi??o concomitante ? deforma??o. O estudo dos mapas de is?pacas e diagramas com orienta??o do eixo de deforma??o revelaram que maior parte das dobras foram ativadas e reativadas em diferentes per?odos durante o Cenoz?ico. As dobras apresentam padr?es cinem?ticos variados ao longo do tempo que refletem a atua??o diferencial dos altos vulc?nicos adjacentes. Estas interpreta??es aliadas a informa??es sobre os sistemas petrol?feros da bacia s?o importantes no mapeamento dos prospectos para hidrocarbonetos

Page generated in 0.0473 seconds