• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 99
  • 82
  • 68
  • 23
  • 12
  • 7
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 731
  • 291
  • 146
  • 79
  • 72
  • 57
  • 49
  • 48
  • 46
  • 45
  • 40
  • 40
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

High Quality Transition and Small Delay Fault ATPG

Gupta, Puneet 27 February 2004 (has links)
Path selection and generating tests for small delay faults is an important issue in the delay fault area. A novel technique for generating effective vectors for delay defects is the first issue that we have presented in the thesis. The test set achieves high path delay fault coverage to capture small-distributed delay defects and high transition fault coverage to capture gross delay defects. Furthermore, non-robust paths for ATPG are filtered (selected) carefully so that there is a minimum overlap with the already tested robust paths. A relationship between path delay fault model and transition fault model has been observed which helps us reduce the number of non-robust paths considered for test generation. To generate tests for robust and non-robust paths, a deterministic ATPG engine is developed. To deal with small delay faults, we have proposed a new transition fault model called As late As Possible Transition Fault (ALAPTF) Model. The model aims at detecting smaller delays, which will be missed by both the traditional transition fault model and the path delay model. The model makes sure that each transition is launched as late as possible at the fault site, accumulating the small delay defects along its way. Because some transition faults may require multiple paths to be launched, simple path-delay model will miss such faults. The algorithm proposed also detects robust and non-robust paths along with the transition faults and the execution time is linear to the circuit size. Results on ISCAS'85 and ISCAS'89 benchmark circuits shows that for all the cases, the new model is capable of detecting smaller gate delays and produces better results in case of process variations. Results also show that the filtered non-robust path set can be reduced to 40% smaller than the conventional path set without losing delay defect coverage. / Master of Science
242

Displacement transfer mechanisms in a portion of the Narrows/Copper Creek thrust sheet, Southwestern Virginia

Grabowski, Richard J. January 1983 (has links)
M.S.
243

Characterizing Mechanisms of Clay Gouge Formation and Implications for Permeability, Moab Fault, Utah

Anyamele, Nwachukwu January 2010 (has links)
Clay composition and content profoundly impacts the strength and sealing capacity of a fault zone, reducing frictional resistance to sliding and permeability by as much as 7 orders of magnitude. Previous approaches, including the Shale Gouge Ratio (SGR) and Shale Smear Potential (SSP), have been used to understand and predict the clay content of fault zones. These models are largely limited to mechanical incorporation of detrital clays. This hypothesis stems from field observations of clay gouge and the smearing and associated attenuation of clay-rich shale beds offset by the fault. Recently, diagenesis has been recognized as an additional critical mechanism of clay enrichment In fault zones. My study investigates the relative contributions of both mechanisms of clay enrichment focusing on the implications for fault permeability and strength through structural and elemental mapping of the Moab Fault in Utah. Detailed mapping at Six sites along the Moab Fault in southeast Utah, revealed distinct structural deformation zones as defined by structures and distribution of normally faulted sandstone and shale including: (1) layers of clay-rich gouge separated by slip surfaces that include isolated sandstone breccia; (2) an inner smeared shale adjacent to the gouge showing increasing bed parallel shearing and resulting boudinage closer to the fault, and an outer smear with little shearing but rotation of beds; (3) faulted sandstone hosting deformation bands, slip surfaces, and intersections, joints and veins in locations near relays. Fluid assisted alteration was revealed by a combination of high spatial resolution scan-lines on outcrops element composition and measured sections of measured with a portable X-Ray Fluorescence device. Results to date include: (1) elemental concentrations relative to immobile species (such as Ti) and by structural zone show that Ca, Sr, Rb are preferentially enriched and/or depleted in the fault core, (2) the fault core hosts the greatest alteration; (3) a progressively more extensive and greater density of bed parallel slip surfaces from protolith to gouge where slip surfaces are associated with mixing and disaggregation; (4) stable concentration of elements associated with illite such as K, occurs preferentially in the gouge; (5) localized enrichment and/or depletion reveals solution mass transfer contributed to formation of the fault core and to a lesser extent the damage zones. Elemental mapping clearly demonstrates a compositional evolution of the fault core, and in particular the clay gouge, that cannot be accounted for by mixing of protolithic formations. Thus, observations from elemental mapping show that solution mass transfer influences the formation of clay gouge in the fault zone, in addition to mechanical incorporation of detrital clays from the surrounding protoliths. / Earth and Environmental Science
244

HYDROCHEMICAL CHARACTERIZATION AND NUMERICAL MODELING OF GROUNDWATER FLOW IN A PART OF THE HIMALAYAN FORELAND BASIN

Asim, Muhammad 22 November 2005 (has links)
No description available.
245

Fault simulation for stuck-open faults in CMOS combinational circuits

Su, Lang January 1993 (has links)
No description available.
246

A numerical study of rupture propagation and earthquake source mechanism.

Das, Shamita January 1976 (has links)
Thesis. 1976. Sc.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography: leaves 208-213. / Sc.D.
247

The relationship of source parameters of oceanic transform earthquakes to plate velocity and transform length

Burr, Norman Charles January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography : leaves 34-39. / by Norman C. Burr. / M.S.
248

Field and laboratory studies of the mechanics of faulting

Jones, Lucile Merrill January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 91-93. / by Lucile Merrill Jones. / Ph.D.
249

Processes of extensional tectonics

Wernicke, Brian Philip January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1982. / Microfiche copy available in Archives and Science. / Two maps and one illustration on 3 folded leaves in pocket. / Includes bibliographies. / by Brian Philip Wernicke. / Ph.D.
250

The statistics of finite rotations in plate tectonics

Hellinger, Steven Jay January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaves 73-75. / by Steven J. Hellinger. / Ph.D.

Page generated in 0.047 seconds