• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 42
  • 12
  • 9
  • 8
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 148
  • 80
  • 57
  • 43
  • 41
  • 37
  • 32
  • 31
  • 27
  • 25
  • 22
  • 21
  • 18
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constitutive modeling of fused deposition modeling acrylonitrile butadiene styrene (ABS)

Mamadapur, Monish Shivappa 15 May 2009 (has links)
Fused deposition modeling is a rapid prototyping process that is widely used to create prototypes. Acrylonitrile butadiene styrene is the most widely used material for fused deposition modeling. The parts are fabricated in a layer by layer fashion and the individual layers are composed of fibers that are deposited, thus making them similar to parts made of a composite material. This study tries to model the behavior of this composite-like material to aid designers in designing parts made of such a “rapid prototyped” material. The mechanical material constants that need to be determined in order to obtain the compliance/ stiffness matrix of the material have been identified and appropriate experiments have been conducted to determine them. Biaxial tensile tests have been conducted to obtain the Young’s moduli and Poisson’s ratios. Torsion tests have been conducted to obtain the Shear moduli. Three point bending tests and combined loading tests have been conducted. Most of the experimental results are in excellent agreement with the analytical/finite element simulation results. Some that are not give a greater insight into the material behavior and have been discussed.
2

THE DEVELOPMENT OF TELEMETRY SYSTEM IN CHINA

Chengliang, Li, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Telemetry as a research interest began to appear in the early days of this century. Since then it has gained great progress with its application fields growing all the time. This paper reviews briefly the history of telemetry introduces its state-of-the-art technology. The research activities and technological levels in this field inside China are included.
3

Study Comparison of WCDMA and OFDM / Study Comparison of WCDMA and OFDM

Chowdhury, Moyamer, Alam, Aminul January 2007 (has links)
Wideband Code Division Multiple Access (WCDMA) is one of the main technologies for the implementation of third-generation (3G) cellular systems. It is based on radio access technique proposed by ETSI Alpha group and the specifications was finalised 1999. WCDMA is also known as UMTS and has been adopted as a standard by the ITU under the name “IMT-2000 direct spread”. The implementation of WCDMA will be a technical challenge because of its complexity and versatility. The complexity of WCDMA systems can be viewed from different angles: the complexity of each single algorithm, the complexity of the overall system and the computational complexity of a receiver. In WCDMA interface different users can simultaneously transmit at different data rates and data rates can even vary in time. WCDMA increases data transmission rates in GSM systems by using the CDMA air interface instead of TDMA. WCDMA is based on CDMA and is the technology used in UMTS. WCDMA is the dominating 3G technology, providing higher capacity for voice and data and higher data rates. The gradual evolution from today's systems is driven by demand for capacity, which is required by new and faster data based mobile services. WCDMA enables better use of available spectrum and more cost-efficient network solutions. The operator can gradually evolve from GSM to WCDMA, protecting investments by re-using the GSM core network and 2G/2.5G services. Orthogonal Frequency Division Multiplexing (OFDM) - technique for increasing the amount of information that can be carried over a wireless network uses an FDM modulation technique for transmitting large amounts of digital data over a radio wave. OFDM works by splitting the radio signal into multiple smaller sub-signals that are then transmitted simultaneously at different frequencies to the receiver. OFDM reduces the amount of crosstalk in signal transmissions. 802.11a WLAN, 802.16 and WiMAX technologies use OFDM. It's also used in the ETSI's HiperLAN/2 standard. In addition, Japan's Mobile Multimedia Access Communications (MMAC) WLAN broadband mobile technology uses OFDM. In frequency-division multiplexing, multiple signals, or carriers, are sent simultaneously over different frequencies between two points. However, FDM has an inherent problem: Wireless signals can travel multiple paths from transmitter to receiver (by bouncing off buildings, mountains and even passing airplanes); receivers can have trouble sorting all the resulting data out. Orthogonal FDM deals with this multipath problem by splitting carriers into smaller subcarriers, and then broadcasting those simultaneously. This reduces multipath distortion and reduces RF interference allowing for greater throughput. In this paper we have discussed about these two methods of third generation radio transmission system which are WCDMA and OFDM with various aspects. In between these two radio transmission technique, a better choice will be investigated.
4

Finite Difference-Boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics

Halabi, Ziad January 2013 (has links)
The engineering problems in Geomechanics and Geotechnical fields are commonly treated through the infinite or semi-infinite media. The best approach to solve these problems numerically is by coupling a finite element or a finite difference with boundary element numerical methods. Coupling the bounded domain modelled by Flac3D, a well-known program that implements an explicit finite difference method, with the boundary element method, which satisfies exactly the governing Partial Differential Equations (PDE) in the surrounding infinite or semi-infinite medium, combines the capabilities and the advantages of both methods. The Domain Decomposition Method (DDM) partitions the task of solving the PDE into separate computations over the coupled sub-domains. This method allows the FDM (Flac3D program) and the Boundary Element Method (BEM) program to work independently and interactively. In contrast, at the level of discretized equations, the coupling method requires building a complicated unified system of equations. Therefore, a Domain Decomposition Sequential Dirichlet-Neumann Iterative Coupling Method is developed in this thesis to couple both programs. The method is applied in four cases, 2D and 3D infinite and semi-infinite domains, using the appropriate fundamental solutions in the Boundary Integral Equation required for each case. After applying this method, the mechanical responses computed by Flac3D is corrected and the same responses far from the bounded domain are computed with less computer runtime (CPU) compared with the uncoupled Flac3D solution. The method is also verified by comparing the obtained numerical results with the corresponding analytical solutions. Two BEM pre and post processing intrinsic plug-ins are created, which provide access to the data of Flac3D, as well as the internal structure of the programming language embedded within Flac3D program. These intrinsics are 10 to 100 times faster to execute than the functions created using the Flac3D embedded language. Furthermore, the complementary part of the Kernels is derived based on Mindlin's fundamental solutions. These Kernels are required to compute the stress inside the 3D semi-infinite domain.
5

Finite Difference-Boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics

Halabi, Ziad January 2013 (has links)
The engineering problems in Geomechanics and Geotechnical fields are commonly treated through the infinite or semi-infinite media. The best approach to solve these problems numerically is by coupling a finite element or a finite difference with boundary element numerical methods. Coupling the bounded domain modelled by Flac3D, a well-known program that implements an explicit finite difference method, with the boundary element method, which satisfies exactly the governing Partial Differential Equations (PDE) in the surrounding infinite or semi-infinite medium, combines the capabilities and the advantages of both methods. The Domain Decomposition Method (DDM) partitions the task of solving the PDE into separate computations over the coupled sub-domains. This method allows the FDM (Flac3D program) and the Boundary Element Method (BEM) program to work independently and interactively. In contrast, at the level of discretized equations, the coupling method requires building a complicated unified system of equations. Therefore, a Domain Decomposition Sequential Dirichlet-Neumann Iterative Coupling Method is developed in this thesis to couple both programs. The method is applied in four cases, 2D and 3D infinite and semi-infinite domains, using the appropriate fundamental solutions in the Boundary Integral Equation required for each case. After applying this method, the mechanical responses computed by Flac3D is corrected and the same responses far from the bounded domain are computed with less computer runtime (CPU) compared with the uncoupled Flac3D solution. The method is also verified by comparing the obtained numerical results with the corresponding analytical solutions. Two BEM pre and post processing intrinsic plug-ins are created, which provide access to the data of Flac3D, as well as the internal structure of the programming language embedded within Flac3D program. These intrinsics are 10 to 100 times faster to execute than the functions created using the Flac3D embedded language. Furthermore, the complementary part of the Kernels is derived based on Mindlin's fundamental solutions. These Kernels are required to compute the stress inside the 3D semi-infinite domain.
6

The Effects of Processing Conditions on Thermoplastic Prototypes Reinforced with Thermotropic Liquid Crystalline Polymers

Gray, Robert Williamson IV 07 August 1997 (has links)
This work is concerned with preliminary studies on developing thermoplastic composite materials suitable for use in fused deposition modeling (FDM). Polypropylene (PP) strands reinforced with continuous thermotropic liquid crystalline polymer (TLCP) fibrils were generated in a novel dual extruder process. Strands were then re-extruded to form short fiber composite monofilaments that were used as feed stock in the FDM 1600 rapid prototyping system. Prototypes containing 40 wt% Vectra A were shown to have tensile properties twice those of parts built using acrylonitrile butadiene styrene copolymer (ABS), a commercially available material used in the FDM 1600 rapid prototyping system. It was also shown that the final mechanical properties of a composite prototype can be tailored to a specific application by adjusting the lay-down pattern, increasing the functionality of the prototype. In order to obtain the maximum tensile properties in these composite prototype, additional studies were performed to determine the effects of thermal and deformation histories on the mechanical properties of monofilaments that were re-extruded from long fiber TLCP reinforced strands. Strands were consolidated uniaxially at temperatures just above the melting point of the matrix in order to determine the effects of thermal history, and an approximate 20% reduction in tensile modulus relative to the modulus of the strands was observed. Monofilaments that could be used as feed stock in FDM were extruded from long fiber TLCP reinforced strands using a capillary rheometer in order to study the effects of capillary diameter, capillary L/D, and apparent shear rate on the tensile properties. / Master of Science
7

Multiple Independent Extrusion Heads for Fused Deposition Modeling

Wachsmuth, John Paul 26 March 2008 (has links)
Fused Deposition Modeling is a rapid prototyping technique in which miniature extruders melt filaments of polymeric materials. The extruder is mounted to an X/Y stage, and a computer controls the machine so that the polymer is deposited in only the appropriate locations. Material is deposited on one layer at a time so that the desired shape is built from the bottom up. While Fused Deposition Modeling has many advantages, it is poorly suited for large parts or for parts with thick walls due to the amount of time that is required to fabricate them. One strategy to reduce the build time is to implement multiple independent extrusion-heads. This thesis addresses various issues and concerns that arise while designing a multiple independent extrusion-head Fused Deposition Modeling system. The greatest design challenges and most critical issues are identified, and then solutions are presented. Physical samples and experiments verify feasibility when possible. Suitable material deposition strategies have been formulated to allow multiple independent extrusion heads to work simultaneously to reduce build time while allowing for a larger build envelope. These strategies produce parts that have nearly identical mechanical properties as those made on a single-head machine. This work seeks to provide information that is useful for designing a multiple independent extrusion-head Fused Deposition Modeling, regardless the number of extrusion heads or machine configuration. Implementing multiple independent extrusion heads will greatly reduce the fabrication time while allowing for a larger build envelope. / Master of Science
8

3D tisk modelového zařízení slévárenské formy

Hracki, Filip January 2019 (has links)
This thesis describes current technologies for a manufacture of wooden pattern equipment. It deals with machines, constructions and materials. Moreover, this study concerns particular technologies of 3D printing and materials used for printing. Its practical part includes a manufacture and mechanical trials of standard samples produced by 3D technologies FDM. The aim is to optimize a manufacturing process of 3D printing of a particular sample. The optimization considers manufacturing time, material consumption and mechanical strength, i.e. impact strength. The results of this study are conclusions and proposals for pattern equipment manufacturers who use the 3D technology.
9

"Manufatura rápida - avaliação das tecnologias de impressão 3D e FDM na fabricação de moldes rápidos" / Rapid Manufactory – Comparative evaluations of 3D printing system against FDM system for Rapid Tooling

Martins, José Roberto 16 May 2006 (has links)
Este trabalho avaliou a aplicação das tecnologias de prototipagem rápida por Impressão 3D e FDM (Fused Deposition Modeling) na produção de moldes rápidos. Esta avaliação foi feita com base nas qualidades das peças obtidas por vazamento nos moldes produzidos, bem como nas limitações encontradas em suas utilizações. Foram estabelecidas as principais diferenças do ponto de vista de qualidade, custos, tempos gastos e praticidade. Foram construídos moldes para peças que contemplando vários graus de dificuldades. Para cada ferramental foram obtidos lotes de peças, através dos quais foram analisadas e comparadas as qualidades dos protótipos. / This work evaluated the application of the Rapid Prototyping technologies 3D printer and FDM (Fused Deposition Modeling) in the rapid manufacturing of molds. This evaluation is based on the quality of the parts molded, as well as in the limitations found in the molds applications. As result the main differences related to quality, and usability was established. The molds produced parts with different degrees of geometric difficulties. For each mold, a few prototypes were produced and their qualities compared.
10

"Manufatura rápida - avaliação das tecnologias de impressão 3D e FDM na fabricação de moldes rápidos" / Rapid Manufactory – Comparative evaluations of 3D printing system against FDM system for Rapid Tooling

José Roberto Martins 16 May 2006 (has links)
Este trabalho avaliou a aplicação das tecnologias de prototipagem rápida por Impressão 3D e FDM (Fused Deposition Modeling) na produção de moldes rápidos. Esta avaliação foi feita com base nas qualidades das peças obtidas por vazamento nos moldes produzidos, bem como nas limitações encontradas em suas utilizações. Foram estabelecidas as principais diferenças do ponto de vista de qualidade, custos, tempos gastos e praticidade. Foram construídos moldes para peças que contemplando vários graus de dificuldades. Para cada ferramental foram obtidos lotes de peças, através dos quais foram analisadas e comparadas as qualidades dos protótipos. / This work evaluated the application of the Rapid Prototyping technologies 3D printer and FDM (Fused Deposition Modeling) in the rapid manufacturing of molds. This evaluation is based on the quality of the parts molded, as well as in the limitations found in the molds applications. As result the main differences related to quality, and usability was established. The molds produced parts with different degrees of geometric difficulties. For each mold, a few prototypes were produced and their qualities compared.

Page generated in 0.0424 seconds