• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Commande Nonlinéaire et Navigation des Véhicules Marins Sous-actionnés

Ghommam, Jawhar 23 February 2008 (has links) (PDF)
Dans cette thèse nous adressons le problème de commande des véhicules marins sous-actionnés. La motivation clé de ce sujet de recherche vient du fait qui les systèmes sous-actionnés posent des défis aussi bien théoriques et pratiques pour l'ingénieur automaticien. En fait, ces systèmes ne peuvent pas être stabilisés par des commandes lisses invariantes dans le temps. De plus, en dépit du nombre de méthodes disponibles pour la commande des systèmes mécaniques sous-actionnés, peu ont adressé des points pratiques importantes tels que l'inclusion explicite de dynamique dans la formulation de problème de commande et le besoin de faire face aux perturbations environnementales résultants des courants des vagues, par exemple. Cette thèse attaque certains de ces problèmes, formule et résout les problèmes de commande de positionnement dynamique, de la poursuite de trajectoire et du suivie de chemin des véhicules marins sous-actionnés. La première partie de cette thèse (Chapitres 3 et 4) constituent les éléments théoriques fondamentaux pour l'analyse du modèle et la synthèse des commandes pour les véhicules marins sous-actionnés. Particulièrement, nous montrons au chapitre 3 que le modèle de véhicule marin sous-actionné ne satisfait pas la condition de nécessaire Brockett pour la stabilisation des systèmes nonlinéaires par actions continues et invariantes dans le temps. Cependant, Il sera montré qu'il est possible d'atteindre la stabilisation en utilisant une commande discontinue ou variable dans le temps. Le chapitre 4 consiste à appliquer des résultats récents sur les systèmes cascades nonlinéaires pour résoudre le problème de déterminer des lois de commande qui stabilisent à l'origine la position et l'orientation d vaisseau sous-actionnés. Deux transformations sont introduites pour représenter le système dans une forme de cascade. Par quelques propriétés du modèle, nous montrons en premier que la stabilisation globale et asymptotique du système se réduit a stabiliser une forme en chaîne de troisième ordre. Une approche discontinue par backstepping est ensuite employée pour la stabilisation du système de forme en chaîne via un retour d'état partiel. Nous montrons que la loi de commande proposée stabilise exponentiellement le modèle réduit dans un ensemble défini, assurant le stabilisation asymptotique, local et uniforme du modèle de vaisseau marin sous-actionné. Pour assurer la stabilité uniforme globale cependant, un backstepping et le temps combinés variant l'approche de contrôle est donc employée. Prochain, nous exploitons la structure de cascade pour construire une trajectoire convenable produite par les équations dynamiques d'un véritable sous-actionnés bateau. Nous montrons ensuite que la stabilisation globale peut être assurée par une par une combinaison de la commande par backstepping et une commande variable dans le temps. Ensuite nous abordons le problème de poursuite de trajectoire. Dans lequel la trajectoire de référence est générée par un navire sous-actionné virtuel. Nous montrons ensuite qu'il existe une commande qui force exponentiellement le navire à la poursuite de la trajectoire partant d'une condition initiale quelconque. Utilisant une approche des Systems cascades, nous montrons que la dynamique de l'erreur de poursuite peut être vue comme une cascade d'un système linéaire et d'un système en chaine de deuxième ordre. La deuxième partie de cette thèse (Chapitre 5, 6 et 7) est consacrée au problème de la manoeuvre du vaisseau sous-actionné le long d'un chemin désiré avec une dynamique prescrite. La conception de la loi de commande est abordée par deux approches. La première vient d'une observation qu'il est plausible en pratique de manoeuvrer le véhicule tel qu'il soit sur son chemin de référence est que sa vitesse totale soit tangente au chemin. Il sera aussi supposé que le véhicule voyage le long du chemin avec une vitesse directe constante. La seconde approche ne conditionne pas la vitesse directe pour être constante. Dans le Chapitre 5, nous exploitons l'approche abordée pour le suivi de chemin pour résoudre le problème de coordinations d'un groupe de véhicules marins. Il est objet de manoeuvrer le mouvement de chaque véhicule tel que le mouvement du groupe est prescrit par un comportement désiré. Ainsi, le mouvement indépendant est coordonné comme une formation selon le comportement désirée. Dans ce chapitre nous considérerons le problème de formation ou plusieurs véhicules sont synchronisés de manière qu'ils soient commandés comme une formation de structure virtuelle. Le chapitre 6, est dévouée au problème général de la commande par retour de sortie pour la stabilisation globale des véhicules marins sous-actionnés. Une application de tel observateur est ensuite faite au problème de la poursuite de trajectoire d'un vaisseau sous-actionné.
22

Active vibration control in a specific zone of smart structures / Contrôle actif de vibration dans une zone spécifique des structures intelligentes

Wang, Peng 25 March 2019 (has links)
Cette recherche vise à résoudre un problème particulier du contrôle de vibration des structures intelligentes. Notre objectif est de réduire les vibrations dans une zone spécifique de la structure intelligente avec une perturbation qui couvre une large gamme de fréquences. De plus, dans cette zone spécifique, ni l'actionnement ni la détection ne sont possibles.Ici, nous faisons face à plusieurs défis principaux. Premièrement, nous devons contrôler les vibrations d’une zone spécifique de la structure, alors que nous n’avons accès aux mesures que dans d’autres zones. Deuxièmement, la large bande passante de la perturbation implique que nombreux modes doivent être contrôlés au même temps, ce qui nécessite l'utilisation de plusieurs actionneurs et capteurs. Cela conduit à un contrôleur MIMO difficile à obtenir avec les méthodes classiques de conception de contrôleur. Troisièmement, il faut éviter le problème de propagation, qui consiste à garantir la stabilité en boucle fermée lorsque le contrôleur basé sur un modèle est appliqué à la configuration réelle. Pour relever ces défis, nous étudions deux stratégies de contrôle: le contrôle centralisé et le contrôle distribué.Pour le contrôle centralisé, nous proposons une méthodologie qui nous permet d’obtenir un contrôleur MIMO simple permettant de relever ces défis. Tout d'abord, plusieurs techniques de modélisation et d’identification sont appliquées pour obtenir un modèle précis d'ordre faible de la structure intelligente. Ensuite, une méthode de synthèse basée sur le contrôle H_∞ avec un critère H_∞ particulièrement proposé est appliquée. Ce critère H_∞ intègre plusieurs objectifs de contrôle, y compris les défis principaux. En particulier, le problème de débordement se transforme en un problème de stabilité robuste et sera garanti en utilisant ce critère. Le contrôleur H_∞ obtenu est une solution standard du problème H_∞. Le contrôleur final est obtenu en simplifiant ce contrôleur H_∞ sans perdre la stabilité en boucle fermée ni dégrader les performances. Cette méthodologie est validée sur une structure de poutre avec des transducteurs piézoélectriques et la zone centrale est celle où les vibrations devraient être réduites. L'efficacité du contrôleur obtenu est validée par des simulations et des expériences.Pour le contrôle distribué, on considère la même structure de poutre et les mêmes objectifs de contrôle. Il existe des méthodes visant à concevoir des contrôleurs distribués pour les systèmes spatialement interconnectés. Cette recherche propose une méthode basée sur la FEM, associée à plusieurs techniques de réduction de modèle, permettant de discrétiser spatialement la structure de poutre et d'en déduire les modèles d’espace d'état des sous-systèmes interconnectés. La conception des contrôleurs distribués ne sera pas abordée dans cette recherche. / This research aims at solving a particular vibration control problem of smart structures. We aim at reducing the vibration in a specific zone of the smart structure under the disturbance that covers a wide frequency band. Moreover, at this specific zone, neither actuation nor sensing is possible.Here we face several main challenges. First, we need to control the vibration of a specific zone of the structure while we only have access to measurements at other zones. Second, the wide bandwidth of the disturbance implies that numerous modes should be controlled at the same time which requires the use of multiple actuators and sensors. This leads to a MIMO controller which is difficult to obtain using classical controller design methods. Third, the so-called spillover problem must be avoided which is to guarantee the closed-loop stability when the model-based controller is applied on the actual setup. To tackle these challenges, we investigate two control strategies: the centralized control and the distributed control.For centralized control, we propose a methodology that allows us to obtain a simple MIMO controller that accomplishes these challenges. First, several modeling and identification techniques are applied to obtain an accurate low-order model of the smart structure. Then, an H_∞ control based synthesis method with a particularly proposed H_∞ criterion is applied. This H_∞ criterion integrates multiple control objectives, including the main challenges. In particular, the spillover problem is transformed into a robust stability problem and will be guaranteed using this criterion. The obtained H_∞ controller is a standard solution of the H_∞ problem. The final controller is obtained by further simplifying this H_∞ controller without losing the closed-loop stability and degrading the performance. This methodology is validated on a beam structure with piezoelectric transducers and the central zone is where the vibration should be reduced. The effectiveness of the obtained controller is validated by simulations and experiments.For distributed control, we consider the same beam structure and the same control objectives. There exist methods aiming at designing distributed controllers of spatially interconnected system. This research proposes a FEM based method, combined with several model reduction techniques, that allows to spatially discretize the beam structure and deduce the state-space models of interconnected subsystems. The design of distributed controllers will not be tackled in this research.

Page generated in 0.0811 seconds