• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Enhancing capacity and coverage for heterogeneous cellular systems

Mahmud, Azwan Bin January 2014 (has links)
The thesis is concerned with capacity and coverage enhancement of OFDMA heterogeneous cellular systems with a specific focus on fractional frequency reuse (FFR), femtocells and amplify-and-forward (AF) relay systems. The main aim of the thesis is to develop new mathematical analysis for the spectral efficiency and outage probability of multi-cells multi-tier systems in diverse traffic, interference and fading scenarios. In the first part of the thesis, a new unified mathematical framework for performance analysis of FFR and soft frequency reuse (SFR) schemes is developed. This leads to new exact expressions of FFR and SFR area spectral efficiency in downlink and uplink scenarios which account for a mixture of frequency reuse factors in a homogeneous cellular system. The mathematical framework is extended to include modelling and performance analysis of FFR systems with elastic data traffic. Further analysis is carried out in relation to the performance of FFR and/or SFR schemes, in terms of energy efficiency and base station cooperation. The new proposed analytical framework can lead to a better understanding and computationally efficient performance analysis of next generation heterogeneous cellular systems. Next generation cellular systems are characterized by an increase in the spatial node density to improve the spectral efficiency and coverage, especially for users at home and at the cell edges. In this regard, relays and femtocells play a major role. Therefore, relays and femocells are the focus of the second part of the thesis. Firstly, we present a new and unified spectral efficiency analysis in dual-hop fixed-gain AF relay systems over generalised interferences models. The generalised interference models are either based on the Nakagami-m fading with arbitrary distance or on spatial Poisson Point Process in case of randomly deployed heterogeneous interferers. The models have been considered separately in the open literature due to the complexity of the mathematical analysis. Secondly, the outage probability is utilised to deduce the femtocell exclusion region for FFR system and a new static resource allocation scheme is proposed for femtocells which improve the capacity. The work presented in the thesis has resulted in the publication of seven scientific papers in prestigious IEEE journals and conferences.
22

Gestion de la mobilité dans les réseaux femtocells / Mobility management in femtocells networks

Ben Cheikh, Ahlam 12 December 2016 (has links)
Les femtocellules sont déployées par des FAPs dans la couverture des macrocellules afin d'offrir aux utilisateurs un service continu aussi bien à l'intérieur qu'à l'extérieur.Elles sont caractérisées par une courte portée,faible puissance et ne peuvent couvrir qu'un nombre limité des utilisateurs.Ces caractéristiques rendent la gestion de la mobilité l'un des plus importants défis à résoudre.Dans cette thèse,nous proposons des nouveaux algorithmes de handover.En premier lieu,nous considérons la direction du mobile comme un paramètre clé pour la prise de décision de Handover.Nous proposons un algorithme de handover nommé OHMF basé sur l'optimisation de la liste de FAPs candidats tout en considérant la qualité de signal ainsi que la direction de mouvement de mobile.Ensuite,nous proposons un processus de prédiction de direction basé sur la régression linéaire.L'idée est de prédire la position future du mobile tout en tenant compte des positions actuelle et précédente.Cet algorithme est intitulé OHDP. En deuxième lieu,nous nous intéressons au problème de prédiction de mobilité pour être plus rigoureux lors de prise de décision de handover.Pour cela,nous utilisons les chaînes de markov cachées comme prédicteur du prochain FAP et nous proposons un algorithme de handover nommé OHMP. Afin d'adapter notre solution à toutes les contraintes du réseau femtocellules,nous proposons un algorithme de handover intitulé OHMP-CAC qui intègre un CAC approprié au réseau étudié et une différenciation de service avec et sans contraintes de QoS.Des études de performances basées sur des simulations et des traces de mobilité réelles ont été réalisées pour évaluer l'efficacité de nos propositions. / Femtocell network are deployed in the macrocell’s coverage to provide extended services with better performances. Femtocells have a short-range and low power transmissions.Each FAP supports a few number of connected users.Owing to these inherent features, one of the most challenging issues for the femtocellular network deployment remains the mobility management.In this thesis, we propose new handovers algorithms adapted to the characteristics of femtocells network.As a first part,we consider the direction of mobile user as a key parameter for the handover decision.To do so,we propose a new handover algorithm called OHMF. Its main purpose is the optimization of the list of FAPs candidates based on signal quality as well as the mobile direction to better choose the FAP target.After that, we propose an algorithm called OHDP based on the direction prediction using the linear regression.The idea behind this is to predict the future position of mobile based on its current and previous position. As a second part, we focus on mobility prediction problem to make an efficient handover decision.We propose a novel handoff decision algorithm called OHMP that uses HMM as a predictor to accurately estimate the next FAP that a mobile UE would visit,given its current and historical movement information.In order to adapt our solution to the characteristics of femtocells network,we propose a handover algorithm called OHMP-CAC based on HMM tool as a predictor, a proposed CAC and the availability of resources of the predicted FAP,SINR and the traffic type.In order to assess the efficiency of our proposals,all underlying algorithms are evaluated through simulations and real mobility traces.
23

Gestion des ressources et de la consommation énergétique dans les réseaux mobiles hétérogènes / Resources and energy consumption management in heterogeneous mobile networks

Choutri, Amira 01 July 2016 (has links)
L'objectif de cette thèse est de développer les méthodes nécessaires à une gestion ciblée et efficace de la mobilité des utilisateurs dans un réseau mobile hétérogène. Ces réseaux sont caractérisés par le déploiement de différents types de cellules (macro, micro, pico et/ou femto). Le déploiement massif des petites cellules (pico et femto) a permis d'offrir une capacité et une qualité de couverture accrue au réseau, notamment dans les zones à forte densité. Cependant, les contraintes temps réel engendrées limitent la QoS offerte aux utilisateurs. De plus, pour des raisons commerciales et/ou environnementales, la nécessité de réduire la consommation énergétique des réseaux mobiles est devenue une réalité. Ainsi, les opérateurs mobiles doivent trouver le bon compromis entre d'une part, la garantie de la QoS offerte aux utilisateurs et la vitesse de mobilité de ces derniers, et d'une autre part, le coût énergétique engendré pour le déploiement du réseau. Pour cela, dans le cadre de la gestion de la mobilité des utilisateurs, nous proposons des modèles pour la gestion des ressources des stations de base ainsi que pour la gestion de leur consommation énergétique. Le premier modèle proposé vise à gérer le partage des ressources entre les clients de l'opérateur mobile. Basé sur la prédiction de la mobilité des utilisateurs, ce modèle permet d'anticiper la gestion des ressources d'une station de base. Le deuxième modèle gère la consommation énergétique du réseau en se basant sur un contrôle d'affectation des utilisateurs mobiles. Cela permet de contrôler en continu la consommation énergétique des stations de base et la QoS qu'elles offrent aux utilisateurs mobiles. Par simulation, en utilisant une topologie réelle d'un réseau mobile, les performances des méthodes proposées sont évaluées en considérant différents scénarios possibles. Leurs performances sont comparées à celles de l'approche adoptée par des opérateurs mobiles actuels, ainsi qu'à celles de certaines approches proposées dans la littérature. / The objective of this thesis is to develop methods for a targeted and efficient management of users mobility in heterogeneous mobile networks. This network is characterized by the deployment of different types of cells (macro, micro, pico and/or femto). The massive deployment of small cells (pico and femto) provides a supplementary coverage and capacity to mobile networks, specially in dense areas. However, the resulting real-time constraints limit the offered QoS. Furthermore, for commercial and/or environmental reasons, the needs to reduce the energy consumed by mobile networks became reality. Thus, mobile operators have to find a good compromise between, on the one hand, the users velocity and the guaranteed QoS, and on the other hand, the cost of deployment of such networks. For that, in the context of users mobility management, we propose models for resource and energy consumption management of base stations. The first model aims at controlling resource sharing between clients of the mobile operators. Based on a mobility prediction of users, this model anticipates the resource management of a base station. The second model aims at reducing energy consumption of the network by managing mobile users assignment to detected cells. This allows a continuous control of consumed energy of base stations while offered QoS is guaranteed. Based on simulation of a real mobile network topology, the performances of proposed models are evaluated while considering different possible scenarios. They are compared to the performances of different strategies as the ones proposed in literature or adopted by current mobile operators.
24

Study of continuous-phase four-state modulation for cordless telecommunications. Assessment by simulation of CP-QFSK as an alternative modulation scheme for TDMA digital cordless telecommunications systems operating in indoor applications

Bomhara, Mohamed A. January 2010 (has links)
One of the major driving elements behind the explosive boom in wireless revolution is the advances in the field of modulation which plays a fundamental role in any communication system, and especially in cellular radio systems. Hence, the elaborate choice of an efficient modulation scheme is of paramount importance in the design and employment of any communications system. Work presented in this thesis is an investigation (study) of the feasibility of whether multilevel FSK modulation scheme would provide a viable alternative modem that can be employed in TDMA cordless communications systems. In the thesis the design and performance analysis of a non-coherent multi-level modem that offers a great deal of bandwidth efficiency and hardware simplicity is studied in detail. Simulation results demonstrate that 2RC pre-modulation filter pulse shaping with a modulation index of 0.3, and pre-detection filter normalized equivalent noise bandwidth of 1.5 are optimum system parameter values. Results reported in chapter 5 signify that an adjacent channel rejection factor of around 40 dB has been achieved at channel spacing of 1.5 times the symbol rate while the DECT system standards stipulated a much lower rejection limit criterion (25-30dB), implying that CP-QFSK modulation out-performs the conventional GMSK as it causes significantly less ACI, thus it is more spectrally efficient in a multi-channel system. However, measured system performance in terms of BER indicates that this system does not coexist well with other interferers as at delay spreads between 100ns to 200ns, which are commonly encountered in such indoor environment, a severe degradation in system performance apparently caused by multi-path fading has been noticed, and there exists a noise floor of about 40 dB, i.e. high irreducible error rate of less than 5.10-3. Implementing MRC diversity combiner and BCH codec has brought in a good gain. / Higher Education Ministry
25

Efficient Quality of Service Provision Techniques in Next Generation Wireless Networks

Haldar, Kuheli L., Ph.D. 27 October 2014 (has links)
No description available.
26

DEPLOYMENT, MANAGEMENT, AND ACCESS ACQUISITION OF SMALL-CELL BASED NETWORKS

Lu, Zhixue 18 September 2014 (has links)
No description available.
27

Resource Allocation in Cellular Networks with Coexisting Femtocells and Macrocells

Shi, Yongsheng 18 January 2011 (has links)
Over the last decade, cellular networks have grown rapidly from circuit-switch-based voice-only networks to IP-based data-dominant networks, embracing not only traditional mobile phones, but also smartphones and mobile computers. The ever-increasing demands for reliable and high-speed data services have challenged the capacity and coverage of cellular networks. Research and development on femtocells seeks to provide a solution to fill coverage holes and to increase the network capacity to accommodate more mobile terminals and applications that requires higher bandwidth. Among the challenges associated with introducing femtocells in existing cellular networks, interference management and resource allocation are critical. In this dissertation, we address fundamental aspects of resource allocation for cellular networks with coexisting femtocells and macrocells on the downlink side, addressing questions such as: How many additional resource blocks are required to add femtocells into the current cellular system? What is the best way to reuse resources between femtocells and macrocells? How can we efficiently assign limited resources to network users? In this dissertation, we develop an analytical model of resource allocation based on random graphs. In this model, arbitrarily chosen communication links interfere with each other with a certain probability. Using this model, we establish asymptotic bounds on the minimum number of resource blocks required to make interference-free resource assignments for all the users in the network. We assess these bounds using a simple greedy resource allocation algorithm to demonstrate that the bounds are reasonable in finite networks of plausible size. By applying the bounds, we establish the expected impact of femtocell networks on macrocell resource allocation under a variety of interference scenarios. We proceed to compare two reuse schemes, termed shared reuse and split reuse, using three social welfare functions, denoted utilitarian fitness, egalitarian fitness, and proportionally fair fitness. The optimal resource split points, which separate resource access by femtocells and macrocells, are derived with respect to the above fitness functions. A set of simple greedy resource allocation algorithms are developed to verify our analysis and compare fitness values of the two reuse schemes under various network scenarios. We use the obtained results to assess the efficiency loss associated with split reuse, as an aid to determining whether resource allocators should use the simpler split reuse scheme or attempt to tackle the complexity and overhead associated with shared reuse. Due to the complexity of the proportionally fair fitness function, optimal resource allocation for cellular networks with femtocells and macrocells is difficult to obtain. We develop a genetic algorithm-based centralized resource allocation algorithm to yield suboptimal solutions for such a problem. The results from the genetic algorithm are used to further assess the performance loss of split reuse and provide a baseline suboptimal resource allocation. Two distributed algorithms are then proposed to give a practical solution to the resource allocation problem. One algorithm is designed for a case with no communications between base stations and another is designed to exploit the sharing of information between base stations. The numerical results from these distributed algorithms are then compared against to the ones obtained by the genetic algorithm and the performance is found to be satisfactory, typically falling within 8\% of the optimum social welfare found via the genetic algorithm. The capability of the distributed algorithms in adapting to network changes is also assessed and the results are promising. All of the work described thus far is carried out under a protocol model in which interference between two links is a binary condition. Though this model makes the problem more analytically tractable, it lacks the ability to reflect additive interference as in the SINR model. Thus, in the final part of our work, we apply conflict-free resource allocations from our distributed algorithms to simulated networks and examine the allocations under the SINR model to evaluate feasibility. This evaluation study confirms that the protocol-model-based algorithms, with a small adjustment, offer reasonable performance even under the more realistic SINR model. This work was supported by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice under Award No. 2005-IJ-CX-K017 and the National Science Foundation under Grant No. 0448131. Any opinions, findings, and conclusions or recommendations expressed in this dissertation are those of the author and do not necessarily reflect the views of the National Institute of Justice or the National Science Foundation. The NSF/TEKES Wireless Research Exchange Program also contributed to this work by funding a summer study. / Ph. D.
28

Creating additional Internet Gateways for Wireless Mesh Networks and Virtual Cell implementation using Dynamic Multiple Multicast Trees

Weragama, Nishan S. 25 October 2013 (has links)
No description available.
29

Interference-Optimal Frequency Allocation in Femtocellular Networks

Ouda, Mahmoud 02 April 2012 (has links)
The evolution of Mobile Internet has led to the growth of bandwidth demanding applications like video streaming and social networking. The required data rates projected for such applications cannot be sustained by current cellular networks. New network architectures like Long Term Evolution (LTE) and LTE Advanced have been carefully engineered and introduced to fulfill such large data rates. The recent introduction of femtocells enabled high data rates and better coverage indoors, without the need for site establishment or upgrading the network infrastructure. Femtocells, however, will potentially suffer from major interference problems due to their expected dense and ad hoc deployment. The main contribution in this thesis is the introduction of a new and a very promising direction in deriving capable and efficient interference mitigation schemes, and comparing this direction to current techniques in the literature. Several works have studied the effect of interference on networks employing femtocells. In this thesis, we also survey such works and provide an overview of the elements considered in mitigating interference. We introduce a new scheme known for its optimality, and use it for frequency assignment in downlink femtocell networks. The algorithm is based on optimization search rather than greedy or heuristic methods. Experimental simulations will be shown to evaluate the proposed scheme against other schemes from the literature. / Thesis (Master, Computing) -- Queen's University, 2012-03-31 02:14:28.549
30

Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud / Joint communication and computation resources allocation for cloud-empowered future wireless networks

Oueis, Jessica 12 February 2016 (has links)
Cette thèse porte sur le paradigme « Mobile Edge cloud» qui rapproche le cloud des utilisateurs mobiles et qui déploie une architecture de clouds locaux dans les terminaisons du réseau. Les utilisateurs mobiles peuvent désormais décharger leurs tâches de calcul pour qu’elles soient exécutées par les femto-cellules (FCs) dotées de capacités de calcul et de stockage. Nous proposons ainsi un concept de regroupement de FCs dans des clusters de calculs qui participeront aux calculs des tâches déchargées. A cet effet, nous proposons, dans un premier temps, un algorithme de décision de déportation de tâches vers le cloud, nommé SM-POD. Cet algorithme prend en compte les caractéristiques des tâches de calculs, des ressources de l’équipement mobile, et de la qualité des liens de transmission. SM-POD consiste en une série de classifications successives aboutissant à une décision de calcul local, ou de déportation de l’exécution dans le cloud.Dans un deuxième temps, nous abordons le problème de formation de clusters de calcul à mono-utilisateur et à utilisateurs multiples. Nous formulons le problème d’optimisation relatif qui considère l’allocation conjointe des ressources de calculs et de communication, et la distribution de la charge de calcul sur les FCs participant au cluster. Nous proposons également une stratégie d’éparpillement, dans laquelle l’efficacité énergétique du système est améliorée au prix de la latence de calcul. Dans le cas d’utilisateurs multiples, le problème d’optimisation d’allocation conjointe de ressources n’est pas convexe. Afin de le résoudre, nous proposons une reformulation convexe du problème équivalente à la première puis nous proposons deux algorithmes heuristiques dans le but d’avoir un algorithme de formation de cluster à complexité réduite. L’idée principale du premier est l’ordonnancement des tâches de calculs sur les FCs qui les reçoivent. Les ressources de calculs sont ainsi allouées localement au niveau de la FC. Les tâches ne pouvant pas être exécutées sont, quant à elles, envoyées à une unité de contrôle (SCM) responsable de la formation des clusters de calculs et de leur exécution. Le second algorithme proposé est itératif et consiste en une formation de cluster au niveau des FCs ne tenant pas compte de la présence d’autres demandes de calculs dans le réseau. Les propositions de cluster sont envoyées au SCM qui évalue la distribution des charges sur les différentes FCs. Le SCM signale tout abus de charges pour que les FCs redistribuent leur excès dans des cellules moins chargées.Dans la dernière partie de la thèse, nous proposons un nouveau concept de mise en cache des calculs dans l’Edge cloud. Afin de réduire la latence et la consommation énergétique des clusters de calculs, nous proposons la mise en cache de calculs populaires pour empêcher leur réexécution. Ici, notre contribution est double : d’abord, nous proposons un algorithme de mise en cache basé, non seulement sur la popularité des tâches de calculs, mais aussi sur les tailles et les capacités de calculs demandés, et la connectivité des FCs dans le réseau. L’algorithme proposé identifie les tâches aboutissant à des économies d’énergie et de temps plus importantes lorsqu’elles sont téléchargées d’un cache au lieu d’être recalculées. Nous proposons ensuite d’exploiter la relation entre la popularité des tâches et la probabilité de leur mise en cache, pour localiser les emplacements potentiels de leurs copies. La méthode proposée est basée sur ces emplacements, et permet de former des clusters de recherche de taille réduite tout en garantissant de retrouver une copie en cache. / Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing architecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm consists of a series of low complexity successive and nested classifications of computational tasks at the mobile side, leading to local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly optimizes the computational and communication resource allocation, and the computational load distribution on the small cells participating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, we propose a convex reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to the SCM. SCM then checks for excess of resource allocation at any of the network small cells. SCM reports any load excess to serving small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy and latency savings. Second, we propose a method for setting up a search small cells cluster for finding a cached copy of the requests computation. The clustering policy exploits the relationship between tasks popularity and their probability of being cached, in order to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum cache hit probability.

Page generated in 0.0297 seconds