Spelling suggestions: "subject:"fenton's"" "subject:"fenton’s""
1 |
Random Chemistry - Leitstruktursuche mittels Fentons Reagenz / Random Chemistry - search for new lead structures with Fenton's reagentKugelmann, Eva January 2011 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Suche nach neuen Leitstrukturen im Bereich der 4-Chinolone mit dem Verfahren der Random Chemistry. Die zugrunde liegende Idee hinter diesem Verfahren besteht darin, neue, potentiell wirksamere Strukturen durch die zufällige Erzeugung einer Substanzbibliothek zu erhalten. Die Substanzbibliothek entsteht dabei durch die Kombination bzw. Reaktion einer mäßig aktiven Ausgangsverbindung mit einem Initiator, der eine Zufallsreaktion in Gang setzt. Vorangegangene Untersuchungen dazu belegten, dass bei der Nutzung von γ-Strahlen als auslösende Spezies vornehmlich durch Radiolyse des Lösungsmittels erzeugte Radikale für die Bildung neuartiger Substanzen verantwortlich waren. Diese als Initiator dienenden Radikale können auch mit herkömmlichen Radikalstartern wie dem Fentons Reagenz erzeugt werden. Fentons Reagenz erweist sich dabei als deutlich kostengünstigere und einfacher zu handhabende Alternative, die ohne jeglichen technischen Aufwand genutzt werden kann. Durch die Reaktion von Wasserstoffperoxid und Eisen(II)-Ionen entstehen Hydroxylradikale, die als hochreaktive Spezies durch die Addition an Doppelbindungen oder durch die Abstraktion von Wasserstoffradikalen und die dadurch ausgelösten Sekundärreaktionen eine Vielzahl neuer Verbindungen erzeugen. Zur Leitstruktursuche wurden als Ausgangssubstanzen zum einen ein Vertreter der 6-Fluor-7-(piperazin-1-yl)-chinolone (1) und zum anderen das 4-Chinolon-Grundgerüst (2) gewählt, um sowohl den Einfluss möglicher Strukturvariationen am Chinolongrundkörper als auch an möglichen Substituenten zu ermitteln. Aus den nach der Umsetzung mit Fentons Reagenz entstandenen Substanzbibliotheken konnten zunächst Fraktionen erhalten werden, die bei der Testung gegen Trypanosoma brucei brucei Aktivitäten mit geringeren IC50-Werten als die Ausgangschinolone zeigten. Die Strukturen der mittels HPLC isolierten Reinsubstanzen wurden aufgeklärt und ihre biologische Wirkung ermittelt. Auf diese Weise konnten ein Chinolonderivat mit N-(2-Aminoethyl)formamid-Rest in Position 7 (Frk1-2c) sowie ein Derivat mit (2-((Methyl-amino)methoxy)ethyl)amino-Rest in Position 7 und einer Hydroxylgruppe in Position 6 (Frk1-1c) identifiziert werden, die eine antitrypanosomale Aktivität mit einem IC50-Wert von 20.69 μM bzw. 17.29 μM aufweisen. Neusynthetisierte Chinolone mit einem amidofunktionalisiertem Piperazinring in Position 7 zeigten eine noch bessere Aktivität gegen Trypanosoma brucei brucei, welche durch Amidierung der Carbonsäure in 3-Stellung noch weiter gesteigert werden konnte. Die Suche nach neuen Leitstrukturen mit Hilfe von Fentons Reagenz offenbarte, dass ein Großteil der in den Substanzbibliotheken gebildeten neuen Strukturen literaturbekannten Metaboliten der Fluorchinolone ähnelt. Da annähernd 50% der möglichen Wirkstoffkandidaten an einer zu geringen Bioverfügbarkeit oder aufgrund ihrer toxischen Metabolite scheitern, ist es sinnvoll bereits in einem möglichst frühen Forschungsstadium auch Parameter wie Resorption, Distribution, Metabolismus, Elimination und Toxikologie (ADMET-Parameter) einer Substanz zu berücksichtigen bzw. zu ermitteln. Deshalb wurde in einem weiteren Teil dieser Arbeit untersucht, ob Fentons Reagenz zur Erzeugung des metabolischen Profils neuer biologisch aktiver Substanzen dienen kann, um damit frühzeitig auch auf mögliche Toxizitäten der Metabolite einer Substanz schließen zu können. Dazu wurden die drei bekannten Antiinfektiva, Cinoxacin, Ciprofloxacin und Linezolid mit Fentons Reagenz umgesetzt und die entstandenen Substanzbibliotheken nach literaturbekannten Metaboliten der jeweiligen Ausgangssubstanz gescreent. Bei einer ausreichenden Löslichkeit der Ausgangssubstanz konnten so vor allem die Metabolite erzeugt werden, die durch Hydroxylierung, Oxidation oder Hydrolyse auch bei der Verstoffwechslung durch Cytochrom-P450 erhalten werden. Da der Nachweis der Bildung literaturbekannter Metabolite durch Fentons Reagenz gelang, ist es nun möglich, einen Teil der potenziellen Metabolite neuer biologisch aktiver Substanzen bereits im Vorfeld, ohne die Nutzung von humanem Lebergewebe zu identifizieren. / The present work is dealing with the search for new lead structures in the field of 4-quinolones via random chemistry. The underlying concept of this approach was to generate compound libraries by combining an active starting compound with an initiator. Earlier experiments using γ-radiation as initializing species revealed that most of the new generated compounds were products of radical chemistry, built by the radiolysis of the solvent. Thus, the idea arose to replace the gainless γ-irradiation by an alternative radical starter such as Fentons reagent which is cheaper and easier-to-handle. Comparing the application of Fentons reagent with the results of the γ-irradiation revealed that similar compound libraries could be achieved. The reaction of hydrogen peroxide with ferrous ions forms highly reactive hydroxyl radicals which are themselves able to generate new compounds by the addition to double bonds or the abstraction of hydrogen radicals. Numerous randomized chain reactions take place and create a compound library of great diversity. In order to find new lead structures two different starting quinolones, 1 and 2, were chosen, in order to examin the influence of structural variation both at the quinolone framework and at the substituents, like the piperazine ring in position 7. A subsequent bioassay-guided-HPLC-fractionation as a deconvolution strategy of the gained product library revealed fractions with higher activity against Trypanosoma brucei brucei and therefore lower IC50 values than the starting compounds. The structures of the purified compounds were elucidated and their biological activity examined. Thus, a new quinolone derivative was identified bearing an N-(2-aminoethyl)formamide residue in position 7 (Frk1-2c) as well as a derivative with a (2-((methylamino)methoxy)ethyl)-amino residue in position 7 beside a hydroxyl group in position 6 (Frk1-1c), possessing an antitrypanosomal activity with an IC50 value of 20.69 μM and 17.29 μM, respectively. Newly synthesized quinolones with an amido-functionalized piperazine ring in position 7 showed an even better activity against Trypanosoma brucei brucei, which could be further enhanced by an amidation of the carbocyclic acid in position 3. Within the scope of searching for new lead structures with Fentons reagent in the field of anti-infectives it could be ascertained that a great part of the produced substances resemble known metabolites of fluoroquinolones. This is due to the fact, that the underlying chemistry of Fenton's one-electron oxidation is comparable to that of cytochrome-P450, which is the main metabolism enzyme. As almost 50% of possible drug candidates fail due to their low bioavailability or their toxic metabolites, it is necessary to take parameters like absorption, distribution, metabolism, elimination and toxicology (ADMET parameter) into consideration as early as possible during the search for new drugs. Contemplating this fact, a further aim of this work was to explore, whether the conversion with Fentons reagent may serve as a screening tool for the metabolic profile of new biologically active compounds. For this purpose, three structurally different antibiotics, ciprofloxacin, linezolid and cinoxacin were chosen for treatment with Fentons reagent. Subsequently the generated compound libraries were screened for the occurrence of known metabolites of the starting substances. If an adequate solubility of the starting compounds was guaranteed, especially metabolites could be generated that evolve from hydroxylation, oxidation or hydrolyses by the cytochrome enzyme complex. As the generation of known metabolites with Fentons reagent could be verified, it is now feasible to create and identify possible metabolites of new bioactive compounds without using human liver tissue.
|
2 |
Elektrochemische Oxidation sprengstoffspezifischer NitroaromatenRenwrantz, Arne. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Braunschweig.
|
3 |
Remediation of high phenol concentration using chemical and biological technologiesKumar, Pardeep 23 December 2010
This thesis presents the potential of integrating chemical and biological treatment technologies for the removal of high concentrations of phenol in a bioremediation medium. High concentrations of phenol in wastewater are difficult to remove by purely biological methods. Chemical oxidation is one way to treat high concentrations of phenol but complete oxidation is not always possible or will make the treatment process uneconomical. An experimental design approach, based on central composite rotatable design (CCRD) was used to evaluate the effects of process parameters on phenol oxidation by Fentons reagent and chlorine dioxide. Performance of the chemical oxidation was evaluated by determining the percentage of phenol oxidized at equilibrium. The reaction mechanism for the oxidation of phenol by Fentons reagent was proposed based on identification of the intermediate compounds.<p>
The effects of H<sub>2</sub>O<sub>2</sub> concentration (2000 to 5000 mg L<sup>-1</sup>) and FeSO<sub>4</sub>.7H<sub>2</sub>O concentration (500 to 2000 mg L<sup>-1</sup>) were investigated on phenol oxidation and optimal concentrations of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub>.7H<sub>2</sub>O for complete oxidation of 2000 mg L<sup>-1</sup> phenol in medium were found to be 4340 mg L<sup>-1</sup> and 1616 mg L<sup>-1</sup>, respectively, at 25°C and pH 3. The main oxidation products were identified as catechol, hydroquinone and maleic acid.<p>
In the case of phenol oxidation by chlorine dioxide, the effects of chlorine dioxide concentration (500 to 2000 mg L<sup>-1</sup>), temperature (10 to 40°C) and pH (3 to 7) on the oxidation of 2000 mg L<sup>-1</sup> of phenol were determined. The optimal concentration of chlorine dioxide to completely oxidize 2000 mg L<sup>-1</sup> of phenol was 2000 mg L<sup>-1</sup>. The other parameters did not significantly affect the oxidation over the ranges studied. The main oxidation products were identified as 1,4-benzoquinone and 2-chloro-1,4-benzoquinone.<p>
Finally, the biodegradation of 1,4-benzoquinone, the main oxidation product of phenol oxidation by chlorine dioxide, was studied in batch and continuous systems using Pseudomonas putida 17484 in two dose McKinneys medium. The effects of 1,4-benzoquinone concentration and temperature were studied on biodegradation of 1,4-benzoquinone in batch reactors. Under optimal conditions, it was found that 150 mg L<sup>-1</sup> 1,4-benzoquinone could be successfully biodegraded at 15°C. In a continuous reactor operating at 15°C the highest removal rate with 500 mg L<sup>-1</sup> of 1,4-benzoquinone was found to be 246 mg L<sup>-1</sup> h<sup>-1</sup>. The values of µmax, Ks and yield were also determined as 0.74±0.03 h<sup>-1</sup> and 14.17±3.21 mg L<sup>-1</sup> and 2x10<sup>13</sup> cell mg<sup>-1</sup>, respectively.
|
4 |
Remediation of high phenol concentration using chemical and biological technologiesKumar, Pardeep 23 December 2010 (has links)
This thesis presents the potential of integrating chemical and biological treatment technologies for the removal of high concentrations of phenol in a bioremediation medium. High concentrations of phenol in wastewater are difficult to remove by purely biological methods. Chemical oxidation is one way to treat high concentrations of phenol but complete oxidation is not always possible or will make the treatment process uneconomical. An experimental design approach, based on central composite rotatable design (CCRD) was used to evaluate the effects of process parameters on phenol oxidation by Fentons reagent and chlorine dioxide. Performance of the chemical oxidation was evaluated by determining the percentage of phenol oxidized at equilibrium. The reaction mechanism for the oxidation of phenol by Fentons reagent was proposed based on identification of the intermediate compounds.<p>
The effects of H<sub>2</sub>O<sub>2</sub> concentration (2000 to 5000 mg L<sup>-1</sup>) and FeSO<sub>4</sub>.7H<sub>2</sub>O concentration (500 to 2000 mg L<sup>-1</sup>) were investigated on phenol oxidation and optimal concentrations of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub>.7H<sub>2</sub>O for complete oxidation of 2000 mg L<sup>-1</sup> phenol in medium were found to be 4340 mg L<sup>-1</sup> and 1616 mg L<sup>-1</sup>, respectively, at 25°C and pH 3. The main oxidation products were identified as catechol, hydroquinone and maleic acid.<p>
In the case of phenol oxidation by chlorine dioxide, the effects of chlorine dioxide concentration (500 to 2000 mg L<sup>-1</sup>), temperature (10 to 40°C) and pH (3 to 7) on the oxidation of 2000 mg L<sup>-1</sup> of phenol were determined. The optimal concentration of chlorine dioxide to completely oxidize 2000 mg L<sup>-1</sup> of phenol was 2000 mg L<sup>-1</sup>. The other parameters did not significantly affect the oxidation over the ranges studied. The main oxidation products were identified as 1,4-benzoquinone and 2-chloro-1,4-benzoquinone.<p>
Finally, the biodegradation of 1,4-benzoquinone, the main oxidation product of phenol oxidation by chlorine dioxide, was studied in batch and continuous systems using Pseudomonas putida 17484 in two dose McKinneys medium. The effects of 1,4-benzoquinone concentration and temperature were studied on biodegradation of 1,4-benzoquinone in batch reactors. Under optimal conditions, it was found that 150 mg L<sup>-1</sup> 1,4-benzoquinone could be successfully biodegraded at 15°C. In a continuous reactor operating at 15°C the highest removal rate with 500 mg L<sup>-1</sup> of 1,4-benzoquinone was found to be 246 mg L<sup>-1</sup> h<sup>-1</sup>. The values of µmax, Ks and yield were also determined as 0.74±0.03 h<sup>-1</sup> and 14.17±3.21 mg L<sup>-1</sup> and 2x10<sup>13</sup> cell mg<sup>-1</sup>, respectively.
|
5 |
Treating Metals in Acid Mine Drainage Using Slow-Release Hydrogen PeroxideMiller, Samuel A. 17 September 2015 (has links)
No description available.
|
6 |
[en] REMOVAL OF MANGANESE FROM WATERS AND INDUSTRIAL EFFLUENTS WITH USE OF HYDROGEN PEROXIDE / [pt] REMOÇÃO DE MANGANÊS DE ÁGUAS E EFLUENTES INDUSTRIAIS COM UTILIZAÇÃO DO PERÓXIDO DE HIDROGÊNIOJULIANA SANTOS DOS SANTOS 07 April 2005 (has links)
[pt] Para remover metais de águas e efluentes aquosos,
geralmente são
empregados métodos tradicionais, os quais envolvem a
neutralização, com
posterior hidrólise e precipitação de hidróxidos,
utilizando uma base.O
manganês deve ser removido de águas e efluentes aquosos,
até que sua
concentração atinja um máximo exigido pela legislação
brasileira, que é de
0,1mg/L para águas e 1mg/L para efluentes aquosos. O
trabalho
desenvolvido aqui investigou a remoção de manganês (II)
utilizando os
oxidantes: oxigênio, reagente Fenton e peróxido de
hidrogênio, para
procurar dentre estes um processo que fosse mais
eficiente
do que o de
simples precipitação do hidróxido. São discutidos os
resultados de ensaios
realizados com a utilização de soluções sintéticas de
manganês (II), cujo
objetivo foi desenvolver um caminho que favorecesse a
remoção deste
metal, para que a concentração do mesmo tanto em águas
quanto em
efluentes aquosos esteja de acordo com os padrões
exigidos
pela legislação
brasileira (resolução CONAMA 20/ 1986).Os ensaios foram
realizados em
pH de 7 a 10, a temperatura ambiente e em torno de 80ºC e
com um tempo
de reação de 5,15 e 30 minutos. Foi utilizado peróxido de
hidrogênio em
dosagem estequiométrica com excesso de 100% e 200%, para
a
reação:
Mn2+ (aq) + H2O2 (aq) -> MnO2(s) + 2 H+ (aq)
Dentre os testes realizados, ambos o peróxido de
hidrogênio
e o reagente
Fenton mostraram-se bastante eficientes na remoção de
manganês,
permitindo atingir concentrações finais desse metal
inferiores a 0,3 mg/L, a
temperatura ambiente em valores de pH inferiores aos
necessários para a
precipitação sem oxidante, com O2. / [en] I order to remove metals from
waters and aqueous effluents generally are employed
traditional methods which
involve neutralization, hydrolysis and precipitation of
hydroxides using a base.
Manganese must be removed from waters and aqueous effluents
down to a
concentration limited by Brazilian law which is of 0.1 mg/L
for waters and 1.0
mg/L for aqueous effluents. The work carried out herein
investigated the removal
of manganese (II) using the following oxidants: oxygen,
hydrogen peroxide, and
Fenton reagent, with the aim to identify a process that
could be more efficient than
the simpler hydroxide precipitation. Results are discussed
of experiments made
with synthetic solutions of 1000 mg/L manganese (II) with
the objective of
developing a route that could favour the removal of that
metal to the levels
established by Brazilian environmental law (resolution
CONAMA 20 / 1986).The
experiments were conducted in pH 7 to 10, at temperature
ambient and 80 oC,
with reaction times of 5, 15 and 30 minutes. Hydrogen
peroxide was used in
excess levels of 100 and 200% for the reaction:
Mn2+ (aq) + H2O2 (aq) -> MnO2 (s) + 2 H+ (aq)
Amongst the conducted experiments, both hydrogen peroxide
and the Fenton
reagent were shown to be most effective, allowing final
concentrations of
manganese less than 0.3 mg/L, at ambient temperature, in pH
values lower than
those required for precipitation without oxidation or with
O2 (air).
|
7 |
A Preliminary Investigation of Treating Metal Pollutants in Water by Slow-Release Hydrogen PeroxideShaw, Caitlin H. 19 September 2017 (has links)
No description available.
|
Page generated in 0.194 seconds