• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetic modelling of lactic acid production from whey/

Altıok, Duygu. Tokatlı, Figen January 2004 (has links) (PDF)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2004 / Includes bibliographical references (leaves. 59).
2

Gärungsverlauf und Gärqualität von Silagen aus nitratarmen Grünfutter

Weiß, Kirsten 09 March 2001 (has links)
Ziel der Arbeit war es, die Besonderheiten des Gärungsverlaufes bei der Silierung von nitratarmem Grünfutter aufzuklären. Dazu wurden sechs Silierversuche zur Untersuchung des Gärungsverlaufes mit unterschiedlichem Clostridiensporenbesatz durchgeführt. Dabei wurde auch die Wirkung eines Zusatzes von 0,05 bzw. 0,1 % N / TS als Nitrat und Nitrit sowie Zusätze von Inoculantien und Ameisensäure geprüft. Weiterhin wurde untersucht, ob die unter Laborbedingungen gefundenen Auswirkungen des Fehlens von Nitrat ebenso bei Grünfutter, das unter praxisnahen Bedingungen geerntet wurde, auftreten. Zur Fragestellung, welche Siliermittel bei nitratarmem Grünfutter eingesetzt werden können, wurde auch hier der Zusatz von zwei MSB-Präparaten und Ameisensäure, sowie eines nitrithaltigen Siliermittels bei geringem und erhöhtem Clostridiensporengehalt des Siliergutes geprüft. Als Ergebnis dieser mehrjährigen, umfangreichen Untersuchungen mit verschiedenen Futterpflanzen und unterschiedlicher Clostridiensporenbelastung hatte sich gezeigt, daß der Verlauf der Stoffumsetzungen und das Gärproduktmuster am Ende der Gärung in Abhängigkeit vom Nitratgehalt wesentlich unterschiedlich ist. In Silagen aus nitratarmem Grünfutter trat Buttersäure bereits von Gärbeginn und parallel zur Milchsäuregärung auf. Die Essigsäuregehalte waren stets sehr niedrig. Anaerob stabile und instabile Silagen aus nitratarmem Grünfutter weisen in allen Stadien des Gärungsprozesses ein völlig anderes Verhältnis zwischen Buttersäure und den übrigen Merkmalen des unerwünschten Stoffabbaus - Essigsäure, Ammoniak, pH - auf als Silagen aus nitrathaltigem Grünfutter. Für die Einschätzung der Vergärbarkeit sind außer TS und Z/PK auch der Nitratgehalt sowie epiphytischer Keimbesatz und Clostridiensporengehalt des AM zu berücksichtigen. Bei Fehlen von Nitrat besteht, unabhängig von der nach TS und Z/PK vorhergesagten Vergärbarkeit, ein besonderes Risiko für das Auftreten von Buttersäure. In Abhängigkeit vom Aufwuchs war die Einschätzung der Vergärbarkeit des Grünfutters verschieden und es trat eine unterschiedliche Gärqualität der Silagen auf. Bei nitratarmem Grünfutter ist der strategische Einsatz von MSB-Präparaten zu empfehlen. Das nitrithaltige Siliermittel hatte sich insbesondere bei erhöhter Clostridiensporenbelastung und/oder niedrigem TS-Gehalt des Grünfutters als sehr wirksam erwiesen. Bei Anwendung des derzeit gültigen, für Silagen aus nitratreichem Grünfutter entwickelten DLG-Beurteilungsschlüssels auf Silagen aus nitratarmem Ausgangsmaterial ist mit einer Fehlbewertung zu rechnen. / The object of this work is to explain the distinctive feature of ensilage of green forage low in nitrate. The fermentation process of ensiling green forage low in nitrate was proved in 6 experiments with different content of spores of clostridia. In all experiments the green forage was ensiled with following treatments: without additives (control), with 0,05 and 0,1% N / DM as nitrate or nitrite, with lactic acid bacteria and formic acid. Furthermore the effects of absence of nitrate, proved under laboratory conditions, has been investigated in experiments with green forage produced under practical conditions. The treatments were the same as mentional above. As a result of this several years and extensive investigations with different green fodder and different content of spores of clostridia it was shown that metabolism during fermentation process and pattern of fermentation products in the end of fermentation are significant different depending on content of nitrate in green forage. In ensiling material low in nitrate butyric acid was formed already at the beginning of the fermentation process, parallel to the lactic acid fermentation. The content of acetic acid was always extremely low. In comparison with silages from green forage high in nitrate anaerobe stable or unstable silages show a different ratio between butyric acid and other characteristics of undesirable decomposition during fermentation - acetic acid, ammonia, pH - in equal fermentation stages. In summary, one can say that epiphytic lactic acid bacteria, content of clostridia spores and nitrate of herbage take into account to judge the fermentability more than previous, together with DM and WSC/BC. Furthermore the judgement of herbage fermentability and the fermentation quality of silages were different depending on number of growth. In silages low in nitrate is an especially risk for occurrence of butyric acid, independing on judgement of fermentability on the basis of DM and ratio of watersoluble carbohydrates to buffering capacity. It`s advisable to use lactic acid bacteria additives (inoculants) always for ensiling green forage low in nitrate. The additive with nitrite has proved as most effectively especially for green forage high in clostridia spores and/ or low content of dry matter of green forage. It is very probably, that the use of current DLG- evaluation system to estimate the fermentation quality, developed for silages from green forage high in nitrate, is not correct and leads to error of judgement of silages from green forage low in nitrate.
3

Podnikatelský plán / Business plan

Zahrádková, Martina January 2015 (has links)
Thesis deals with making of a business plan for a bakery, which is focused rye and fermentation products. Main goal of this thesis is to evaluate operation efficiency and viability of a small bakery, which delivers only to five parts of Prague. Methods and techniques used to create a business plan are presented in theoretical part and used in practical part thereafter.
4

Propriétés immunomodulatrices des cellules dendritiques humaines stimulées par un produit de fermentation de bactéries probiotiques Bifidobacterium breve C50 / Immunomodulatory properties of human dendtritic cells stimulated by a fermentation product of probiotic bacteria Bifidobacterium breve C50

Granier, Audrey 26 June 2012 (has links)
Notre système immunitaire a pour fonction de nous protéger des infections mais également des allergies, des cancers ou des maladies inflammatoires. Les cellules dendritiques (DC) sont au coeur de ce système en orientant les réponses immunitaires vers une voie effectrice ou tolérogène. A l’état immature, elles sont présentes, entre autres, aux interfaces avec le milieu extérieur. Elles permettent ainsi la reconnaissance des antigènes, notamment ceux présents dans le tube digestif, comme les aliments ou la flore commensale. Certaines bactéries dites probiotiques sécrètent des métabolites au cours de la fermentation définissant les produits de fermentation. Notre travail montre qu’un produit de fermentation de la souche bactérienne BbC50 (BbC50sn) activent les DC humaines grâce à sa fixation sur le récepteur TLR2 et modulent de nombreux récepteurs à leurs surfaces. Les DC ainsi maturées peuvent activer des lymphocytes T CD4+ et CD8+ et également induire des lymphocytes T régulateurs CD4+ et CD8+. / The immune system protects an organism from infections, allergy, cancer and inflammatory diseases. Dendritic cells (DC) present antigens to T cells and polarize lymphocytes toward either an effector or a tolerogenic response. In an immature state, DC are localized in mucosas at interfaces with the external environment, after receiving signals they acquire the ability to activate T cells. Thus, DC allow the recognition of antigens, present in the digestive tract, such as food or commensal flora. Some probiotic bacteria produce metabolites during fermentation defined as the fermentation products. Our work has shown that a fermentation product of the bacterial strain BbC50 (BbC50sn) activate human DC through TLR2 ligation on DC and modulate numerous receptors on their surfaces. DC activated with this fermentation product activate CD4+ and CD8+ T cells and also induce CD4+ and CD8+ regulatory T lymphocytes.
5

The effect of malting and fermentation on the nutritional and potential health-promoting properties of finger millet [Eleusine coracana (L.) Gaertn] grain

Udeh, Henry Okwudili 21 September 2018 (has links)
PhD (Food Science) / Department of Food Science and Technology / Finger millet (FM) [Eleusine coracana] is an underutilised cereal grain used as a food source in South Africa. Increased research interest in FM has span over the years owing to its unique nutritional and bioactive composition. Following the recent interest in natural curative substances over their synthetic counterparts in the treatment of food dependent diseases, FM has shown potential nutraceutical effects. Some important health effects like antidiabetic, antioxidative, anti-inflammatory and antimicrobial properties have been reported in recent trials with FM. In view of the increasing utilisation and application of FM in the region of Thulamela Municipality, Vhembe District of South Africa, two common indigenous FM varieties (brown and dark brown) were obtained and analysed for their physicochemical properties, levels of minerals, phytic acid, phenolic compounds and antioxidant activities. For this process, malted non-alcoholic beverages were produced and analysed for their physicochemical properties, levels of phenolic compounds, and total phenolics and antioxidant activities. FM grains were soaked, germinated and kilned at an interval of 24 h for 96 h, using sorghum as an external reference. Mineral composition of the FM and sorghum samples were analysed using an inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS), and atomic absorption spectrometer (AAS). Identification and quantification of phenolic compounds were performed using ultra-performance liquid chromatography mass spectrometer (UPLC-MS). All experiments were performed in triplicate except for the UPLC-MS analysis of the malted non-alcoholic beverages that was done in duplicate. Data were analysed by one way analysis of variance, and the mean values were separated by Duncan’s multiple comparison test using SPSS version 24.0. Data showed that the FM varieties were rich in macro- and micro- or trace elements. The macro-elements calcium, magnesium, potassium, phosphorus and sulphur were found in high amounts ranging from 1597.37 mg/ kg – 6775.03 mg/ kg; iron, zinc, strontium and silicon were found in significant amounts in the range 21.47 mg/ kg – 55.67 iii mg/ kg, copper and boron were found in low amounts (2.2 mg/ kg – 7.7 mg/ kg), along with selenium and cobalt (0.02 mg/ kg – 0.05 mg/ kg). Heavy metals, barium and aluminium were found in the FM varieties. Varietal difference was found to play an important role in the mineral content of the grains during malting. Malting for 24 h reduced mineral content except for sodium. Beyond 48 h of malting, mineral content increased, particularly, for 96 h in FM grain malt. Significant (p < 0.05) increases in the mineral content of FM varieties were noted at 48 h and 96 h of malting. Increase occurred at 72 h of malting for potassium, iron and boron. Malting did not have any effect on the manganese content of the dark brown FM; however, it increased the manganese content at 48 h of malting for brown FM. Malting for 96 h significantly (p < 0.05) reduced sodium content. Consecutive decrease in phytic acid content of the grains was not recorded with durations in malting time. Although statistically significant differences (p < 0.05) were observed, malting did not result in too much change in the physicochemical properties of the grains. Several flavonoids, catechin, epicatechin, quercetin, taxifolin, and hesperitin were isolated, whilst protocatechuic acid was the only phenolic acid detected in the unmalted and malted FM. Increases in catechin, epicatechin and protocatechuic acid were observed for 72 and 96 h malt of brown FM with similar observations recorded for sorghum. Complete loss of taxifolin, catechin, and hesperitin were noted with malting time. FM grains exhibited 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging action and iron reducing activities. Increased iron reducing activity alongside ABTS radical scavenging activity was recorded with malting time. A fermentation-time dependent decrease in the pH of the non-alcoholic beverages, with a corresponding increase in sugar content were recorded. A similar decrease was also recorded for the viscosities of the beverages. The FM malt beverages were found to contain a higher amount of citric acid compared to the sorghum malt beverage. A decrease in the citric acid content with fermentation time was noted in the grain malt beverages fermented with Lactobacillus fermentum, particularly for the iv FM beverage. The phenolic compounds detected in the FM malt beverages fermented with the grain microbial flora and Lactobacillus fermentum were protocatechuic acid, catechin and epicatechin. Taxifolin and kaempferol along with the earlier mentioned compounds were detected in the sorghum malt beverage. Catechin was found in higher amount compared to other phenolic compounds in the FM and sorghum malt beverages. FM malt beverages were found to contain a higher amount of total phenolics compared to the beverage prepared from sorghum malt. Fermentation with the grains’ microbial flora and L. fermentum resulted in reduced total phenolics of FM and sorghum malt beverages, particularly after 24 h of fermentation. A fermentation-time dependent decrease in total phenolics of FM beverages fermented with L. fermentum was noted. Fermentation within 24 - 48 h using the grain microbial flora showed higher total individual phenolic compounds for the dark brown FM and sorghum, compared to other fermentation periods. Fermentation of the beverages for 24 h retained a higher amount of the total phenolics compared to other fermentation periods, especially for the L. fermentum beverages. Reduced total phenolic content and antioxidant activity of the beverages were noted at 24 h of fermentation for the two microbial sources. Significant (p < 0.05) increases in total phenolics were observed within 72 – 96 h of fermentation of the brown FM malt beverage with the grains’ microbial flora. Fermentation for 72 h and 96 h with L. fermentum increased the total phenolic content of the brown FM. Increase in total flavonoid content (TFC) of brown FM malt beverage was noted at 72 h fermentation for both microbial sources. Unlike with L. fermentum, no significant (p > 0.05) change in TFC was observed for the dark brown FM beverage after 24 h fermentation with the grains’ microbial flora. Beverages exhibited DPPH, ABTS radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverage retained a higher amount of total phenolic and flavonoid contents, and had higher antioxidant activity compared to other fermentation periods for both microbial sources. The study shows that FM is a rich source of essential minerals and v phenolic compounds, and demonstrates that 72 to 96 h of malting has a positive effect on minerals and certain phenolic compounds over the 48 h malting period widely used for preparation of FM malt. The presence of hesperitin in FM grain was established. A new method was developed for the production of FM non-alcoholic beverage with measurable amounts of health-promoting compounds. An ideal fermentation period (24 h) for FM malt non-alcoholic beverage production with enhanced health-promoting compounds, using Lactobacillus fermentum was demonstrated. Fermentation limit (96 h) for production of FM malt beverage using either the grain microbial flora or L. fermentum was confirmed. These findings provide a rationale for increased utilisation of FM as a functional food grain, and its use as malt in production of non-alcoholic beverage for health promotion and wellness. / NRF

Page generated in 0.1411 seconds