• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 2
  • Tagged with
  • 36
  • 35
  • 34
  • 29
  • 29
  • 29
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconium

Schroeder, Uwe, Materano, Monica, Mittmann, Terence, Lomenzo, Patrick D., Mikolajick, Thomas, Toriumi, Akira 09 November 2022 (has links)
Different causes for ferroelectric properties in hafnium oxide were discussed during the last decade including various dopants, stress, electrode materials, and surface energy from different grain sizes. Recently, the focus shifted to the impact of oxygen vacancies on the phase formation process. In this progress report, the recent understanding of the influence of oxygen supplied during deposition on the structural phase formation process is reviewed and supplemented with new data for mixed HfₓZr₁₋ₓOᵧ films. Even though polar and non-polar HfₓZr₁₋ₓOᵧ thin films are well characterized, little is known about the impact of oxygen exposure during the deposition process. Here, a combination of structural and electrical characterization is applied to investigate the influence of the oxygen and zirconium content on the crystallization process during ALD deposition in comparison to other deposition techniques. Different polarization properties are assessed which correlate to the determined phase of the film. Optimized oxygen pulse times can enable the crystallization of HfₓZr₁₋ₓOᵧ in a polar orthorhombic phase rather than a non-polar monoclinic and tetragonal phase.
12

Stability of polarization in organic ferroelectric metal-insulator-semiconductor structures

Kalbitz, René January 2011 (has links)
Organic thin film transistors (TFT) are an attractive option for low cost electronic applications and may be used for active matrix displays and for RFID applications. To extend the range of applications there is a need to develop and optimise the performance of non-volatile memory devices that are compatible with the solution-processing fabrication procedures used in plastic electronics. A possible candidate is an organic TFT incorporating the ferroelectric co-polymer poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE)) as the gate insulator. Dielectric measurements have been carried out on all-organic metal-insulator-semiconductor structures with the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) as the gate insu-lator. The capacitance spectra of MIS devices, were measured under different biases, showing the effect of charge accumulation and depletion on the Maxwell-Wagner peak. The position and height of this peak clearly indicates the lack of stable depletion behavior and the decrease of mobility when increasing the depletion zone width, i.e. upon moving into the P3HT bulk. The lack of stable depletion was further investigated with capacitance-voltage (C-V) measurements. When the structure was driven into depletion, C-V plots showed a positive flat-band voltage shift, arising from the change in polarization state of the ferroelectric insulator. When biased into accumulation, the polarization was reversed. It is shown that the two polarization states are stable i.e. no depolarization occurs below the coercive field. However, negative charge trapped at the semiconductor-insulator interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. The measured output characteristics of the studied ferroelectric-field-effect transistors confirmed the results of the C-V plots. Furthermore, the results indicated a trapping of electrons at the positively charged surfaces of the ferroelectrically polarized P(VDF-TrFE) crystallites near the insulator/semiconductor in-terface during the first poling cycles. The study of the MIS structure by means of thermally stimulated current (TSC) revealed further evidence for the stability of the polarization under depletion voltages. It was shown, that the lack of stable depletion behavior is caused by the compensation of the orientational polarization by fixed electrons at the interface and not by the depolarization of the insulator, as proposed in several publications. The above results suggest a performance improvement of non-volatile memory devices by the optimization of the interface. / Organische Transistoren sind besonders geeignet für die Herstellung verschiedener preisgünstiger, elektronischer Anwendungen, wie zum Beispiel Radio-Frequenz-Identifikations-Anhänger (RFID). Für die Erweiterung dieser Anwendung ist es notwendig die Funktion von organischen Speicherelementen weiter zu verbessern. Das ferroelektrische Polymer Poly(vinylidene-Fluoride-Trifluoroethylene) (P(VDF-TrFE)) eignet sich besonders gut als remanent polarisierbarer Isolator in Dünnschich-Speicherelementen. Um Schalt- und Polarisationsverhalten solcher Speicherelemente zu untersuchen, wurden P(VDF-TrFE)-Kondensatoren und Metall-Halbleiter-Isolator-Proben sowie ferroelektrische Feld-Effekt-Transistoren (Fe-FET) aus dem Halbleiter Poly(3-Hexylthiophene) (P3HT) und P(VDF-TrFE) hergestellt und dielektrisch untersucht. Die Charakterisierung der MIS-Strukturen mittels spannungsabhängiger Kapazitätsspektren machte deutlich, dass es nicht möglich ist, einen stabilen Verarmungzustand (Aus-Zustand) zu realisieren. Kapazität-Spannungs-Messungen (C-V) an MIS-Proben mit uni/bi-polaren Spannungszyklen zeigten eine stabile ferroelektrische Polarisation des P(VDF-TrFE)-Films. Eine Depolarisation des Isolators durch den Mangel an Minoritäts-Ladungsträgern konnte als Grund für die Instabilität des Verarmungs-Zustandes ausgeschlossen werden. Die C-V-Kurven wiesen vielmehr auf die Existenz fixierter, negativer Ladungsträger an der Grenzfläche hin. Zusammenfassend kann festgestellt werden: die Ursache der Ladungsträgerinstabilitäten in organischen ferroelektrischen Speicherelementen ist auf die Kompensation der ferroelektrischen Orientierungspolarisation durch "getrappte"(fixierte) negative Ladungsträger zurückzuführen. Dieses Ergebnis liefert nun eine Grundlage für die Optimierung der Isolator/Halbleiter-Grenzfläche mit dem Ziel, die Zahl der Fallenzustände zu minimieren. Auf diesem Wege könnte die Stabilität des Speicherzustandes in organischen Dünnschichtspeicherelementen deutlich verbessert werden.
13

Dynamic modeling of hysteresis-free negative capacitance in ferroelectric/dielectric stacks under fast pulsed voltage operation

Hoffmann, M., Slesazeck, S., Mikolajick, T. 26 January 2022 (has links)
To overcome the fundamental limit of the transistor subthreshold swing of 60 mV/dec at room temperature, the use of negative capacitance (NC) in ferroelectric materials was proposed [1]. Due to the recent discovery of ferroelectricity in CMOS compatible HfO₂ and ZrO₂ based thin films [2], [3], the promise of ultra-low power steep-slope devices seems within reach. However, concerns have been raised about switching-speed limitations and unavoidable hysteresis in NC devices [4], [5]. Nevertheless, it was shown that NC effects without hysteresis can be observed in fast pulsed voltage measurements on ferroelectric/dielectric capacitors [6], which was recently confirmed using ferroelectric Hf₀.₅ Zr₀.₅ O₂[7], [8]. While in these works only the integrated charge after each pulse was studied, here we investigate for the first time if the transient voltage and charge characteristics are also hysteresis-free.
14

Interplay between ferroelectric and resistive switching in doped crystalline HfO₂

Max, Benjamin, Pešić, Milan, Slesazeck, Stefan, Mikolajick, Thomas 16 August 2022 (has links)
Hafnium oxide is widely used for resistive switching devices, and recently it has been discovered that ferroelectricity can be established in (un-)doped hafnium oxide as well. Previous studies showed that both switching mechanisms are influenced by oxygen vacancies. For resistive switching, typically amorphous oxide layers with an asymmetric electrode configuration are used to create a gradient of oxygen vacancies. On the other hand, ferroelectric switching is performed by having symmetric electrodes and requires crystalline structures. The coexistence of both effects has recently been demonstrated. In this work, a detailed analysis of the reversible interplay of both switching mechanisms within a single capacitor cell is investigated. First, ferroelectric switching cycles were applied in order to drive the sample into the fatigued stage characterized by increased concentration of oxygen vacancies in the oxide layer. Afterwards, a forming step that is typical for the resistive switching devices was utilized to achieve a soft breakdown. In the next step, twofold alternation between the high and low resistance state is applied to demonstrate the resistive switching behavior of the device. Having the sample in the high resistance state with a ruptured filament, ferroelectric switching behavior is again shown within the same stack. Interestingly, the same endurance as before was observed without a hard breakdown of the device. Therefore, an effective sequence of ferroelectric—resistive—ferroelectric switching is realized. Additionally, the dependence of the forming, set, and reset voltage on the ferroelectric cycling stage (pristine, woken-up and fatigued) is analyzed giving insight into the physical device operation.
15

Ferroelectric negative capacitance domain dynamics

Hoffmann, Michael, Khan, Asif Islam, Serrao, Claudy, Lu, Zhongyuan, Salahuddin, Sayeef, Pešić, Milan, Slesazeck, Stefan, Schroeder, Uwe, Mikolajick, Thomas 16 August 2022 (has links)
Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr₀.₂Ti₀.₈)O₃ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.
16

Unveiling the double-well energy landscape in a ferroelectric layer

Hoffmann, Michael, Fengler, Franz P. G., Herzig, Melanie, Mittmann, Terence, Max, Benjamin, Schroeder, Uwe, Negrea, Raluca, Lucian, Pinitilie, Slesazeck, Stefan, Mikolajick, Thomas 17 October 2022 (has links)
The properties of ferroelectric materials, which were discovered almost a century ago¹ , have led to a huge range of applications, such as digital information storage² , pyroelectric energy conversion³ and neuromorphic computing⁴⁻⁵ . Recently, it was shown that ferroelectrics can have negative capacitance⁶⁻¹¹, which could improve the energy efficiency of conventional electronics beyond fundamental limits¹²⁻¹⁴. In Landau–Ginzburg–Devonshire theory¹⁵⁻¹⁷, this negative capacitance is directly related to the doublewell shape of the ferroelectric polarization–energy landscape, which was thought for more than 70 years to be inaccessible to experiments¹⁸. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf₀.₅Zr₀.₅O₂. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applications¹⁹. In addition, the Hf₀.₅Zr₀.₅O₂ used in this work is currently the most industry-relevant ferroelectric material, because both HfO₂ and ZrO₂ thin films are already used in everyday electronics²⁰. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency.
17

Identification of the nature of traps involved in the field cycling of Hf₀.₅Zr₀.₅O₂-based ferroelectric thin films

Islamov, Damir R., Gritsenkoa, Vladimir A., Perevalov, Timofey V., Pustovarov, Vladimir A., Orlov, Oleg M., Chernikova, Anna G., Markeev, Andrey M., Slesazeck, Stefan, Schröder, Uwe, Mikolajick, Thomas, Krasnikov, Gennadiy Ya. 06 October 2022 (has links)
The discovery of ferroelectricity in hafnium oxide has revived the interest in ferroelectric memories as a viable option for low power non-volatile memories. However, due to the high coercive field of ferroelectric hafnium oxide, instabilities in the field cycling process are commonly observed and explained by the defect movement, defect generation and field induced phase transitions. In this work, the optical and transport experiments are combined with ab-initio simulations and transport modeling to validate that the defects which act as charge traps in ferroelectric active layers are oxygen vacancies. A new oxygen vacancy generation leads to a fast growth of leakage currents and a consequent degradation of the ferroelectric response in Hf₀.₅Zr₀.₅O₂ films. Two possible pathways of the Hf₀.₅Zr₀.₅O₂ ferroelectric property degradation are discussed.
18

Physical Approach to Ferroelectric Impedance Spectroscopy: The Rayleigh Element

Schenk, T., Hoffman, M., Pešić, M., Park, M. H., Richter, C., Schroeder, U., Mikolajick, T. 05 October 2022 (has links)
The Rayleigh law describes the linear dependence of the permittivity of a ferroelectric on the applied ac electric field amplitude due to irreversible motions of domain walls. We show that this gives rise to a new equivalent-circuit element predestined to fit the impedance spectra of ferroelectrics based on an accepted physical model. Such impedance spectroscopy is a powerful tool to obtain a dielectric and resistive representation of the entire sample structure. The superiority of the Rayleigh analysis based on impedance spectroscopy compared to the common single-frequency approach is demonstrated for a ferroelectric Si : HfO₂ thin film
19

Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films

Park, Min Hyuk, Lee, Young Hwan, Kim, Han Joon, Kim, Yu Jin, Moon, Taehwan, Kim, Keum Do, Hyun, Seung Dam, Mikolajick, Thomas, Schroeder, Uwe, Hwang, Cheol Seong 11 October 2022 (has links)
Hf₁₋ₓZrₓO₂ (x ∼ 0.5–0.7) has been the leading candidate of ferroelectric materials with a fluorite crystal structure showing highly promising compatibility with complementary metal oxide semiconductor devices. Despite the notable improvement in device performance and processing techniques, the origin of its ferroelectric crystalline phase (space group: Pca2₁) formation has not been clearly elucidated. Several recent experimental and theoretical studies evidently showed that the interface and grain boundary energies of the higher symmetry phases (orthorhombic and tetragonal) contribute to the stabilization of the metastable non-centrosymmetric orthorhombic phase or tetragonal phase. However, there was a clear quantitative discrepancy between the theoretical expectation and experiment results, suggesting that the thermodynamic model may not provide the full explanation. This work, therefore, focuses on the phase transition kinetics during the cooling step after the crystallization annealing. It was found that the large activation barrier for the transition from the tetragonal/orthorhombic to the monoclinic phase, which is the stable phase at room temperature, suppresses the phase transition, and thus, plays a critical role in the emergence of ferroelectricity.
20

Turn all the lights off: Bright- and dark-field second-harmonic microscopy to select contrast mechanisms for ferroelectric domain walls

Hegarty, Peter A., Beccard, Henrik, Eng, Lukas M., Rüsing, Michael 16 May 2024 (has links)
Recent analyses by polarization resolved second-harmonic (SH) microscopy have demonstrated that ferroelectric (FE) domain walls (DWs) can possess non-Ising wall characteristics and topological nature. These analyses rely on locally analyzing the properties, directionality, and magnitude of the second-order nonlinear tensor. However, when inspecting FE DWs with SH microscopy, a manifold of different effects may contribute to the observed signal difference between domains and DWs, i.e., far-field interference, Čerenkov-type phase-matching (CSHG), and changes in the aforementioned local nonlinear optical properties. They all might be present at the same time and, therefore, require careful interpretation and separation. In this work, we demonstrate how the particularly strong Čerenkov-type contrast can selectively be blocked using dark- and bright-field SH microscopy. Based on this approach, we show that other contrast mechanisms emerge that were previously overlayed by CSHG but can now be readily selected through the appropriate experimental geometry. Using the methods presented, we show that the strength of the CSHG contrast compared to the other mechanisms is approximately 22 times higher. This work lays the foundation for the in-depth analysis of FE DW topologies by SH microscopy.

Page generated in 0.0673 seconds