• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of polycyclic aromatic hydrocarbons (PAHs) on dry flue gas desulfurization (FGD) by-products

Sun, Ping January 2004 (has links)
No description available.
12

An Evaluation of Flue Gas Desulfurization Gypsum for Abandoned Mine Land Reclamation

Pasini, Rachael A. 25 September 2009 (has links)
No description available.
13

Potential Utilization of FGD Gypsum for Reclamation of Abandoned Highwalls

Modi, Deepa 22 October 2010 (has links)
No description available.
14

Analysis of a pilot-scale constructed wetland treatment system for flue gas desulfurization wastewater

Talley, Mary Katherine January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Stacy L. Hutchinson / Coal-fired generation accounts for 45% of the United States electricity and generates harmful emissions, such as sulfur dioxide. With the implementation of Flue Gas Desulfurization (FGD) systems, sulfur dioxide is removed as an air pollutant and becomes a water pollutant. Basic physical/chemical wastewater treatment can be used to treat FGD wastewater, but increased regulations of effluent water quality have created a need for better, more economical wastewater treatment systems, such as constructed wetlands. At Jeffrey Energy Center, north of St. Mary’s, KS, a pilot-scale constructed wetland treatment system (CWTS) was implemented to treat FGD wastewater before releasing the effluent into the Kansas River. The objectives of this study were to 1.) determine if a portable water quality meter could be used to assess water quality and track pollutant concentrations, 2.) develop a water balance of the CTWS, 3.) generate a water use coefficient for the CWTS, and 4.) create a mass balance on the pollutants of concern. Water quality measurements were taken with a HORIBA U-50 Series Multi Water Quality Checker and compared to analytical water tests provided by Continental Analytic Services, Inc. (CAS) (Salina, KS). The water balance was created by comparing inflows and outflows of data determined through flow meters and a Vantage Pro2™ weather station. Information from the on-site weather station was also used to compute the system water use coefficient. Water sampling was conducted from date to date at 10 locations within the CWTS. In general, there was little to no relationship between the HORIBA water quality measurements and the analytical water tests. Therefore, it was recommended that JEC continue to send water samples on a regular basis to an analytical testing laboratory to assess the CWTS function and track pollutants of concern. Because the water balance was conducted during system initiation, there was a great deal of fluctuation due to problems with the pumping system, issues with the upstream FGD treatment system, extreme weather events, and immature vegetation. This fluctuation resulted in the system having a non-steady state operation, which weakened the ability to calculate a system water use coefficient. However, during periods of strong system function, the water use coefficient was similar to previous studies with maximum water use being approximately equal to the reference evapotranspiration. The results of the mass balance indicated high removals mercury, selenium, and fluoride, but low removals of boron, manganese, chloride, and sulfate were exported from the CWTS.
15

Systematic Selection and Application of Backfill in Underground Mines

Masniyom, Manoon 27 July 2009 (has links) (PDF)
The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash and FGD-gypsum from power plants, natural and synthetic anhydrite. The different material mixtures investigated can be used as a technically and economically viable backfill for underground mines. In summary, the systematic selection of backfill materials from by-products, mine waste and tailings from the mineral processing of mining industry and other industries were suited as a backfill material for test field in China coal fires and recommended for underground potash mines in Thailand.
16

Systematic Selection and Application of Backfill in Underground Mines

Masniyom, Manoon 17 April 2009 (has links)
The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash and FGD-gypsum from power plants, natural and synthetic anhydrite. The different material mixtures investigated can be used as a technically and economically viable backfill for underground mines. In summary, the systematic selection of backfill materials from by-products, mine waste and tailings from the mineral processing of mining industry and other industries were suited as a backfill material for test field in China coal fires and recommended for underground potash mines in Thailand.
17

CO2 sequestration using brine impacted fly ash

Muriithi, Grace Nyambura January 2009 (has links)
>Magister Scientiae - MSc / Coal combustion accounts for over 40 % of the world's energy production and this figure is projected to increase with increasing human population and industrialization. The combustion of coal leads to the generation of waste products such as fly ash (FA), brine from water treatment, bottom ash, slag, flue gas desulphurization products (FGD) and gas emissions such as N20, and C02. The emissions contribute to air pollution and global warming, while FA, brines, and FGD are possible soil and water pollutants. In order to minimize the environmental impact of coal combustion, mitigation of the effects of coal burning processes such as the waste products (FA, brine, bottom ash, slag and FGD) and gas emissions is required. This study investigated utilization of the Secunda FA (class F) and reverse osmosis (RO) Tutuka brine to sequester C02 in an attempt to make coal power production more environmentally sustainable. It was hypothesized that South African FA and brine could sequester C02 through mineral carbonation. A statistical approach was undertaken to optimize the % CaC03 formed from FAlbrine/C02 interaction with input parameters of temperature, pressure, particle size and solid/liquid ratio (S/L) being varied. The ranges adopted for the input parameters were: temperature of 30°C or 90 °C; pressure of 1 Mpa or 4 Mpa; four particle sizes namely bulk ash, > 150 11m, < 20 11m and 20 urn- 150 11m particle size range; S/L ratios ofO.1, 0.5 or 1. The FA! brine dispersions were carbonated in a high pressure reactor varying the above mentioned input parameters. The fresh Secunda FA of various size fractions was characterized morphologically using scanning electron microscopy, chemically using X-ray fluorescence and mineralogically using qualitative X-ray diffraction. The carbonated solid residues on the other hand were characterized using quantitative X-ray diffraction, scanning electron microscopy, thermal gravimetic analysis and Chittick tests. The raw brine from Tutuka together with the carbonation leachates were characterized using inductively coupled mass spectrometry and ion chromatography. Total acid digestion was carried out to evaluate the differences in the total elemental content in both the fresh ash and the carbonated solid residues. The results suggested that South African FA from Secunda belongs to class F based on the CaO content as well as the total alumina, silica and ferric oxide content, while the RO brine from Tutuka were classified as NaS04 waters. Mineral carbonation occurred and ranged between 2.75 % and 6.5 % of CaC03 depending on the input parameters. Two polymorphs of CaC03 were identified in the carbonated residues i.e. calcite and aragonite. The carbonated ash/brine leachates were cleaner with respect to major and trace element concentration compared to raw brine thus the carbonation process could be used to improve the quality of brines generated in the power industry. Removal of the major elements from brine was as follows Ca-74.8 %, Na- 28.7 %, Mg- 98 %, K- 82.9 %, S04- 20.8 %. Hundred percent removal was observed for traces of Fe, Al, Mn, Cu, Zn, Pb, Ni, As, Ti, Sr, Se, Si and N03. However Mo, V, B, and Cl concentrations increased by 72.5 %, 94 %,48.2 % and 7.2 % respectively after carbonation at 90°C, 4 Mpa, S/L ratio of 1 using the bulk ash. The parameters found to be of most significance in the carbonation process were the main effects of temperature, particle size and S/L ratio while the interactions of temperature and particle size as well as the interaction of temperature with S/L ratio were also found to be significant. The statistical approach led to a clear understanding of the effect of each input parameter as well as the ansmg interactions. The conditions of 90°C, 4 Mpa, using bulk ash at a S/L ratio of 1 resulted in the highest yield of % CaC03 with a value of 6.5 %. Theoretically one ton of Secunda FA containing 9.2 % of CaO could sequester 0.083 tons of C02. With the optimized protocol developed in this study bearing in mind that the carbonation efficiency is 75.54%, 1 ton of Secunda FA could sequester 0.062 tons of CO2. This translates to 0.65 % of CO2 produced annually at Secunda plant being sequestered in the FAlbrine dispersions. In other words, 16 tons of FA are required to sequester a ton of C02 annually. It was also observed that carbonation using brine resulted in higher carbonation efficiency than carbonation using water as the Ca2+ component in the brine contributed towards the Ca 2+concentration.
18

Leaching of coal combustion products: field and laboratory studies

Cheng, Chin-Min 02 December 2005 (has links)
No description available.
19

Impacts of Biosolids and FGD Gypsum Application on Marginal Soil Quality and Production of Miscanthus as a Bioenergy Crop

Kilpatrick, Lindsay Anne 19 July 2012 (has links)
No description available.

Page generated in 0.0398 seconds