• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 17
  • 15
  • 11
  • 8
  • 5
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 35
  • 26
  • 23
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Montée en brillance des réseaux de lasers à fibre : Nouvelle approche par diagnostic à contraste de phase dans une boucle d’optimisation / Brightness enhancement in tilled-aperture laser systems : Innovative method associating a phase-contrast like filter with an optimization loop

Kabeya, David 12 December 2016 (has links)
Les méthodes de combinaison cohérente sont rapidement apparues comme très prometteuses dans la course à la puissance des sources lasers. Cela s’explique par le fait que la puissance autour de l’axe de propagation évolue selon une loi quadratique avec le nombre de faisceaux combinés. Mes premiers travaux ont porté sur la montée en puissance de pompage dans les systèmes de mise en phase passive par auto-organisation. Pour la première fois, nous avons mis en évidence à la fois expérimentalement et numériquement, qu’au-delà du seuil laser, le filtrage spectral intracavité dû à la structure interférométrique du système laser, est un des principaux facteurs limitant l’obtention de qualités de phasage élevées. L’augmentation du nombre d’émetteurs accentue la dégradation de l’efficacité de combinaison avec la montée en puissance, montrant l’incapacité de ce type de méthode à combiner efficacement un grand nombre d’émetteurs lasers de forte puissance. Par la suite, mes travaux ont porté sur l’étude d’une méthode innovante de phasage actif, mise au point à XLIM. Le principe de cette méthode associe un filtrage optique de type contraste de phase, à un algorithme d’optimisation réduisant les écarts de phases entre émetteurs. Les calculs et expériences ont mis en évidence la très faible sensibilité de la méthode au nombre d’émetteurs mis en jeu. Les démonstrations de combinaison cohérente de 7 à 37 émetteurs fibrés délivrant jusqu’à 5W chacun ont été faites. Ce dernier résultat constitue aujourd’hui un record en termes de nombre d’émetteurs combinés de manière active. L’efficacité de combinaison en champ lointain a été estimée à une valeur élevée de 94%, correspondant à une erreur de phase résiduelle d’environ λ/25. Le faible nombre d’itérations d’algorithme nécessaires pour converger a permis de corriger les fluctuations de phase sur une bande d’environ 1kHz. / Coherent laser beam combining techniques rapidly appeared highly promising in the field of ultra-high power laser sources. Indeed, the combined intensity around the propagation axis follows a quadratic law with the number of combined emitters. The first part of my work has been focused on passive phasing techniques, based on self-organization properties of coupled lasers. We have shown, both numerically and experimentally, that the intracavity filtering function due to the interferometric nature of the set-up, is an intrinsic reason for combining efficiency decrease far above laser threshold. The decrease goes steeper when the number of combined laser increases, making that kind of system inappropriate for coherently combining a large number of lasers delivering high power. The second part of my work consisted in studying an innovative active phasing method that associates a phase-contrast like filter with an optimization algorithm reducing phase errors between emitters. Both simulations and experiments showed the weak sensitivity of this method to the number of combined emitters. We demonstrated the phasing of 7 to 37 fiber lasers, delivering up to 5W each. To the best of our knowledge, this last result is the highest number of fiber lasers combined with an active phasing method. The combining efficiency has been estimated around 94%, corresponding to a residual phase error of λ/25. The weak number of algorithm iterations needed to reach the in-phase regime offered a bandwidth of approximately 1kHz.
42

Characterization and Power Scaling of Beam-Combinable Ytterbium-Doped Microstructured Fiber Amplifiers

Mart, Cody W., Mart, Cody W. January 2017 (has links)
In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 μm diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 µm diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 µm core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 µm diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ~1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ~1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.
43

Srovnání svarů vytvořených CO2 laserem a vláknovým laserem / Compare weld from CO2 laser and fiber laser

Leidorf, Michal January 2011 (has links)
The project compares the technology of welding of CO2 laser and fiber laser in terms of engineering study, the welds will be made by same welding conditions on two materials (S235JRG2 a X5CrNi 18-10), by using different protective gases (Helium and Argon). In the terms of literal background research both the technologies and questions of laser welding are described. The geometry of welds is carried out in the experimental part. The final results of the experiment are concluded at the end of the diploma thesis.
44

Svařování jemnozrnných ocelí typu DOMEX vláknovým YbYAG laserem. / Welding of finegrain steel from range of DOMEX steel by YbYAG fiber laser.

Němeček, Tomáš January 2012 (has links)
The project elaborated within the engineering studies of the branch Manufacturing technology presents an experiment of welding of high strength steel by fiber laser. The project includes a theoretical study, which deals with the welding material properties, principles and types of lasers and laser welding technology. The practical part contains a verification of the welding parameters according to the standard ČSN EN ISO 15614-11. The final evaluation results of the experiment at the close of the project are presented.
45

Svařování otěruvzdorných ocelí laserovým svazkem / Laser welding of the abrasive steel

Sklenář, Zdeněk January 2012 (has links)
The project, prepared by the engineering study compares the welding abrasive steel HARDOX 400, fiber laser welding method, which will be compared with a MAG welding method and using different protective gases (argon and helium). In the theoretical part, i worked both welding technology's and the issue of high-strength steel. In the experimental part were performed and evaluated by destructive mechanical testing and bending test, the transverse tension test, test macrostructure and microstructure of welds. In conclusion the thesis deduced the final results of the experiment.
46

Svařování jemnozrnných ocelí typu Docol vláknovým YbYAG laserem / Welding of finegrain steel from range of Docol steel by YbYAG fiber laser

Kollnerová, Kateřina January 2013 (has links)
The project developed in the framework of engineering degree in Mechanical Engineering Technology presents experiment welding of high strength steels Docol using a fiber laser. The work is a literature review describing the properties of welded materials, principles and different types of lasers and laser welding technology. In the experimental part, the validation set welding parameters. Finally, work is the evaluation of experiments.
47

Nonlinear Microscopy Based on Femtosecond Fiber Laser

Ge, Xiaowei 30 May 2019 (has links)
No description available.
48

[pt] GERAÇÃO DE PULSOS ÓPTICOS CURTOS SINTONIZÁVEIS EM COMPRIMENTO DE ONDA UTILIZANDO UM LASER A FIBRA EM ANEL / [en] WAVELENGTH TUNABLE OPTICAL PULSES GENERATION USING FIBER LASERS

ANA PAULA CARDOSO RODRIGUES DE LIMA 11 November 2005 (has links)
[pt] Neste trabalho, descreve-se a geração de pulsos ópticos curtos com diferentes taxas de repetição, para aplicações em sistemas de transmissão de sólitons. Para isto foi desenvolvido um laser a fibra em anel operando na terceira janela de comunicações ópticas (em 1.55 mm), capaz de gerar pulsos curtos, utilizando a técnica de mode-locking ativo. Na configuração empregada o modulador de Mach- Zehnder, normalmente usado, foi substituído por um laser DFB, funcionando como modulador de intensidade e, ao mesmo tempo, como filtro óptico sintonizável. O laser semicondutor tem seu ganho chaveado através de modulação direta, levando a cavidade e operar no regime de mode- locking harmônico. Uma sintonia contínua de comprimentos de onda pode ser obtida, simplesmente, variando-se a temperatura do diodo laser. Foram analisados aspectos como estabilidade, duração e pureza espectral dos pulsos ópticos emitidos por essa fonte, bem como sua faixa de sintonia de comprimentos de onda e possíveis taxas de repetição. Os pulsos ópticos gerados foram transmitidos através de enlaces ópticos com fibra óptica convencional, comprovando-se a propagação de sólitons. / [en] In this dissertation, it is depicted short optical pulses generation with different repetition rates, for soliton based transmission systems applications. In order to accomplish that, a fiber laser operating at the third window of the optical communication (1.55 um) was developed, capable of generate short pulses, through the active mode-locking technique. Within the current configuration, the Mach-Zehnder modulator, usually employed, was replaced by a DFB laser, running as both an intensity modulator and tunable optical filter. The semiconductor laser was gain switched through direct modulation, leading the cavity to operate on harmonic mode- locking scheme. A continuous wavelength tuning could be achieved by changing the temperature of the diode laser. Several aspects were analyzed, such as stability, duration and spectral purity of the optical pulses generated by this source. The wavelength tuning range and its possible repetition rates were also investigated. The optical pulses were transmitted through standard optical fiber links, demonstrating the propagation of solitons.
49

[pt] GERAÇÃO DE PULSOS ÓPTICOS ULTRACURTOS USANDO A TÉCNICA DE MODE-LOCKING RACIONAL EM LASERS A FIBRA / [en] ULTRA-SHORT OPTICAL PULSES GENERATION USING RATIONAL MODE-LOCKING IN FIBER LASERS

DANIELE LUISE ALVES SEIXAS 16 November 2005 (has links)
[pt] Neste trabalho descreve-se a geração de pulsos ópticos curtos estáveis, com durações na faixa de alguns psicossegundos, e diversas taxas de repetição. Para isto foi construído um laser a fibra dopada com érbio, na configuração em anel e operando nos regimes de mode- locking ativo harmônico e racional (MLEFL). As características temporal e espectral dos pulsos são estudadas. Os pulsos de saída apresentam potência de pico elevada e são limitados pela transformada, ou seja, na forma de sólitons. Esses pulsos são extremamente adequados para sistemas de comunicações solitônicos. Os lasers a fibra dopada com érbio operando no regime de mode-locking ativo (MLEFL), têm-se mostrado como um dos candidatos mais promissores para os sistemas solitônicos. Isto se deve ao fato desses dispositivos além de produzirem pulsos ultracurtos e com as características necessárias a esses sistemas, eles apresentam alta potência de saída e possibilitam a variação da taxa de repetição. Para a montagem desses lasers de forma razoavelmente compacta são utilizados componentes ópticos, tais como controladores de polarização, filtros e moduladores, em versões integradas (pigtailed) e já disponíveis comercialmente. / [en] This work describes a simple and stable harmonically mode- locked erbium-doped fiber ring laser, that produces high power, ~ 1 ps transform-limited sech optical pulses. Pulse trains with different high repetition rates were obtained using harmonic mode-locking and rational harmonic mode- locking techniques. The temporal and spectral characteristics of the pulses are studied. The pulses are extremely appropriate for soliton based systems communications. Actively mode-locked erbium doped fiber ring lasers (MLEFL), have attracted much attention and are one of most promising candidates for soliton systems. This is due to some characteristics which are very convenient for high capacity optical systems: they can produce very short transform limited optical pulses at gigahertz rates. Such lasers also present high output powers, long term stability and can be easily tuned to operate in a wide region of wavelengths.
50

Development Of Thulium Fiber Lasers For High Average Power And High Peak Power Operation

Sims, Robert 01 January 2013 (has links)
High power thulium fiber lasers are useful for a number of applications in both continuous-wave and pulsed operating regimes. The use of thulium as a dopant has recently gained interest due to its large bandwidth, possibility of high efficiency, possibility of high power and long wavelength ~1.8 – 2.1 μm. The longer emission wavelength of Tm-doped fiber lasers compared to Yb- and/or Er-doped fiber lasers creates the possibility for higher peak power operation due to the larger nonlinear thresholds and reduced nonlinear phase accumulation. One primary interest in Tm-doped fiber lasers has been to scale to high average powers; however, the thermal and mechanical constraints of the fiber limit the average power out of a single-fiber aperture. One method to overcome the constraints of a single laser aperture is to spectrally combine the output from multiple lasers operating with different wavelengths into a single beam. In this thesis, results will be presented on the development of three polarized 100 W level laser systems that were wavelength stabilized for SBC. In addition to the development of the laser channels, the beams were combined using bandpass filters to achieve a single near diffraction-limited output. Concurrently, with the development of high average power systems there is an increasing interest in femotosecond pulse generation and amplification using Tm- doped fiber lasers. High peak power sources operating near 2 µm have the potential to be efficient pump sources to generate mid-infrared light through supercontinuum generation or optical parametric oscillators. This thesis focuses on the development of a laser system utilizing chirped pulse amplification (CPA) to achieve record level energies and peak powers for ultrashort pulses in Tm-doped fiber. iv A mode-locked oscillator was built to generate femtosecond pulses operating with pJ energy. Pulses generated in the mode-locked oscillator were limited to low energies and contained spectral modulation due to the mode-locking mechanism, therefore, a Raman-soliton self-frequency shift (Raman-SSFS) amplifier was built to amplify pulses, decrease the pulse duration, and spectrally clean pulses. These pulses were amplified using chirped pulse amplification (CPA) in which, limiting factors for amplification were examined and a high peak power system was built. The primary limiting factors of CPA in fibers include the nonlinear phase accumulation, primarily through self-phase modulation (SPM), and gain narrowing. Gain narrowing was examined by temporally stretching pulses in a highly nonlinear fiber that both stretched the pulse duration and broadened the spectrum. A high peak power CPA system amplified pulses to 1 µJ energy with 300 fs compressed pulses, corresponding to a peak power >3 MW. High peak power pulses were coupled into highly nonlinear fibers to generate supercontinuum

Page generated in 0.0491 seconds