491 |
High-Speed Imaging of Polymer Induced Fiber FlocculationHartley, William H. 22 March 2007 (has links)
This study presents quantitative results on the effect on individual fiber length during fiber flocculation. Flocculation was induced by a cationic polyacrylamide (cPAM). A high speed camera recorded 25 second video clips. The videos were image-analyzed and the fiber length and the amount of fiber in each sample were measured. Prior to the flocculation process, fibers were fractionated into short and long fibers. Trials were conducted using the unfractionated fiber, short fiber, and long fiber. The short and long fibers were mixed in several trials to study the effect of fiber length. The concentration of cPAM was varied as well as the motor speed of the impeller (RPM). It was found that the average fiber length decreased more rapidly with increasing motor speed. Increasing the concentration of cPAM also led to a greater decrease in average fiber length. A key finding was that a plateau was reached where further increasing the amount of cPAM had no effect. Hence, fibers below a critical length resisted flocculation even if the chemical dose or shear was increased. This critical length was related to the initial length of the fiber.
|
492 |
Finite-Different Time-Domain Method for Modeling the Photonic Crystal FibersYang, Fu-chao 03 July 2006 (has links)
Photonic crystal fibers (PCFs) are divided into two different kinds of fibers. The first one, index-guiding PCF, guides light by total internal reflection between a solid core and a cladding region with multiple air-holes. On the other hand, the second one uses a perfectly periodic structure exhibiting a photonic band-gap (PBG) effect at the operating wavelength to guide light in a low index core-region.
A compact 2D-FDTD method based on finite-difference time-domain method is formulated and is effectively applied to analysis PCFs and PBGFs. We study the propagation features of fundamental mode and the fundamental characteristics such as effective index, modal-field diameter and chromatic dispersion in index-guiding PCFs. By optimizing the air-hole diameters and the hole-to-hole spacing of index-guiding PCFs, both the dispersion and the dispersion slope can be controlled in a wide wavelength range. We also investigate the propagation features of fundamental mode and band-gap effect of PBGFs.
|
493 |
Diallel analysis and heritability estimates of fiber traits for ELS, Gossypium hirsutum L., progeny.Berger, Gregory L. 16 January 2010 (has links)
With a demand for high-quality cotton fiber in international markets,
improvement of fiber quality in U.S. grown commercial cultivars is necessary. Smith,
Hague, Thaxton, and Jones developed a group of experimental lines in 2008 that
produced extra-long staple fiber (>35.6 mm). This study determined general combining
ability (GCA), and specific combining ability (SCA) of four experimental ELS lines and
four commercial cultivars utilizing biplot and conventional diallel analysis, determined
performance of F2 progeny, calculated broad-sense (H2) heritability estimates for F2
progeny, and verified the ability of selected parental combinations to produce variable
segregating populations with variability of fiber traits. Initial crosses were made in 2007,
with additional crosses being made in the field and in a greenhouse in 2008. F1 progeny
and parents were grown in a replicated trial near College Station, TX, in 2007 and 2008.
F2 progeny lines and parents were grown in replicated trials at two locations in 2008.
Due to a significant GxY interaction for all F1 fiber traits, data were reported by years.
Experimental ELS lines showed positive GCA effects for fiber length, strength, and length uniformity, while the majority of commercial lines showed negative effects.
These findings suggest experimental ELS lines contain alleles for fiber length and
strength not present in this particular set of commercial cultivars. Experimental ELS
lines exhibited negative GCA effects for lint percent, which suggests further selection is
needed for these lines to be commercially competitive. Performances of F2 lines suggest
differences in fiber traits are predominantly due to additive gene action. Furthermore,
data suggests alleles for fiber length and strength is present in the experimental ELS
lines not present in the commercial cultivars. F2 progeny exhibited moderate heritability
for all fiber traits. Sufficient variability exists within selected F2 progeny to select for
phenotypes exhibiting improved fiber quality over commercial cultivar potential with
similar agronomic qualities of commercial cultivars. The ELS lines are a useful source
of germplasm for plant breeders looking to improve fiber qualities in their programs.
|
494 |
High performance multimode fiber systems: a comprehensive approachPolley, Arup 17 November 2008 (has links)
Steady increases in the bandwidth requirements of access networks and local area networks have created a need for short-reach links supporting data rates of 10 Gb/s and larger. Server applications and data center applications too require such links. The primary challenge for these links lies in the reduction of the cost while retaining or improving the performance.
Traditionally, multimode fiber (MMF) has satisfied these needs because of its low installation cost resulting from the alignment tolerance associated with the large core size. However, in view of the ever-increasing performance requirements, extraction of the best performance requires a holistic view of the channel that involves global optimization of transmitter, fiber, receiver performance and signaling strategies. The optimization results in a channel impairment mitigation technique that is a combination of optical, opto-electronic, and electronic methods.
Both glass and plastic MMF links have been addressed in this work and many of the advances apply equally to both media. One example that applies strictly to glass MMF is the use of Raman amplification to not only combat attenuation but to reduce intersymbol interference (ISI). Raman amplification was demonstrated as an optical channel impairment mitigation technique enabling multi-km, multi-Gb/s transmission over glass-MMF. We demonstrated both numerically and experimentally that a power penalty reduction of 1.4 dBo can be achieved for 10 Gb/s transmission over 9 km of 62 micron glass MMF with a Raman pump power 250 mW.
In recent years, plastic optical fiber (POF) has emerged as a potentially lower cost alternative to glass-MMF in enabling high performance links. The primary objective of this research is to explore the possibilities and develop low-cost, short-reach, high-data-rate POF-links. Using a comprehensive multimode fiber model, we showed that strong mode coupling, together with a reasonably accurate refractive index profile enables 40 Gb/s transmission over 200 m of graded-index POF. We experimentally demonstrated 40 Gb/s error-free transmission over 100 m of graded index perfluorinated POF (GI-PF-POF). We also demonstrated that even larger core (120 micron) GI-PF-POF can support >10 Gb/s over 100 m length. We numerically computed and experimentally measured the differential modal delay of GI-PF-POF to demonstrate that the available bandwidth is nearly independent of the launch conditions. Therefore, the alignment tolerance at the transmitter is increased resulting in a dramatically reduced packaging cost at the transmitter.
However, the large-core POF increases the difficultly in capturing of the light efficiently onto a detector and results in optical power penalty and associated modal noise. To solve this, we have designed and developed a 10 Gb/s photoreceiver consisting of a large (100 micron diameter) GaAs PIN photodetector and a regulated cascade input based transimpedance amplifier (TIA) with low input impedance.
Thus, a low-cost, alignment-tolerant, high-data-rate link is realized that uses a high-power, high-speed vertical cavity surface emitting laser (VCSEL) transmitter, large-core, high-speed GI-PF-POF, and the developed receiver.
|
495 |
High-solids, mixed-matrix hollow fiber sorbents for CO₂ capturePandian Babu, Vinod Babu 08 June 2015 (has links)
Post-combustion carbon capture, wherein the CO2 produced as a result of coal combustion is trapped at the power plant exhaust, is seen as a bridging technology to reduce CO2 emissions and combat climate change. This capture process will however impose a parasitic load on the power plant and technologies need to be developed to minimize this energy penalty. This research focuses on a technology which uses solid sorbents fashioned into a hollow fiber form that allows water-moderated thermal cycling as a means of trapping CO2 from flue gas. While hollow fiber technology has intrinsic advantages over competing liquid amine and packed bed technologies, the materials used to fabricate hollow fibers and the fabrication process itself need to be optimized in order to result in competitive, robust hollow fiber sorbents. This dissertation focuses on the material selection process for each component of the hollow fiber platform and discusses ways to optimize the fiber and barrier layer formation. Different materials were evaluated to function as the solid sorbent, the matrix polymer and the barrier layer; and eventually their performance was measured against past work in this area.
|
496 |
Development of commercial, sustainable processes for dyeing generic, unmodified polypropylene fiberGupta, Murari Lal 25 August 2008 (has links)
Identification of viable vat dye candidates of a trichromatic series (compatible red, yellow and blue colorants) plus an orange based on the developed single-stage acid leuco vat dyeing process for unmodified polypropylene (PP) flat woven fabrics has been achieved with adequate fastness properties to washing, crocking and dry-cleaning: C. I. Vats Orange 1, Yellow 2 and Red 1 have been certified, whereas Vat Blue 6 is a marginal candidate. Vat Blue 1 has been demonstrated to be a viable colorant for dyeing of PP fiber as a single colorant. Molecular dynamics simulation and solubility parameter (SP) approaches have been utilized to screen the potential vat dye candidates for generic PP coloration. Experimental K/S results have exhibited good correlation with the predicted mixing energy of acid leuco vat dyes-PP fiber and the calculated dyes' SP's. The low SP/mixing energy acid leuco vat dyes (e.g., C. I. Vat Red 1) have shown better color-yield/fastness properties than the high SP/mixing energy vat dyes (e.g., C. I. Vat Brown 1), exhibiting that increasing difference of SP between the vat dye and the PP fiber, coupled with a higher mixing energy of dye-PP blend, resulted in decreased interactions between the two. For example, C.I. Vat Brown 1 with its high SP and calculated mixing energy with PP gave least color yield than the certified vat dyes, all with lower SP's and mixing energies. Cross-section micrographs of the dyed fibers revealed the absence of "ring-dyeing". Experimentally determined kinetic parameters such as affinity of dyeing and heat of dyeing quantified the presence of interaction between acid leuco vat dyes and PP fiber. Tensile test and X-ray crystallinity results have confirmed that dyeing process did not alter the tensile strength and modulus of the dyed PP textiles significantly. PP Fabrics dyed with simulated continuous dyeing processes (pad-steam and pad-dry heat) demonstrated good color yields and levelness with adequate fastness to crocking, washing and dry cleaning.
|
497 |
Strength training and anabolic steroids : a comparative study of the vastus lateralis, a thigh muscle and the trapezius, a shoulder muscle, of strength-trained athletes /Eriksson, Anders, January 2006 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2006. / Härtill 5 uppsatser.
|
498 |
Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applicationsChiguma, Jasper. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Materials Science and Engineering Program, 2009. / Includes bibliographical references.
|
499 |
Análise comparativa de desempenho mecânico de tubos de concreto reforçados com macrofibras poliméricas e fibras de aço. / Comparative evaluation of the mechanical performance of polymeric fibers and steel fibers reinforcement concrete pipes.Renata Campos Escariz 09 December 2011 (has links)
O Brasil necessita de uma ampla implantação de sistemas de saneamento básico, como os de águas pluviais e, principalmente, coleta e tratamento de esgoto. Para resolver este problema pode ser interessante o emprego de tubos de concreto. Apesar de recente, o estudo de tubos de concreto reforçados com fibras já possibilitou a revisão da norma brasileira NBR 8890:2007 que prevê a utilização das fibras como único reforço do componente. No entanto, apenas fibras de aço são permitidas. Apesar de terem um potencial de durabilidade maior do que os tubos convencionalmente armados, ainda há a possibilidade de ampliar sua vida útil se forem utilizadas macrofibras poliméricas, que são resistentes à corrosão eletrolítica e hoje se encontram disponibilizadas no mercado Nacional. A dúvida que permanece é se essas fibras conseguem apresentar o mesmo desempenho mecânico das fibras de aço. Assim, esta dissertação de mestrado tem por objetivo principal realizar uma avaliação comparativa de desempenho mecânico das macrofibras poliméricas e das fibras de aço destinadas ao reforço de tubos de concreto para obras de saneamento básico. De forma a possibilitar estas avaliações foi feita uma verificação de desempenho por meio do ensaio de compressão diametral, com controle de deslocamentos, em tubos de concreto reforçados com fibras. Complementarmente, foram feitos o ensaio de absorção de água, a determinação do teor de fibra incorporado ao concreto por meio de testemunhos extraídos dos tubos e o ensaio de compressão axial em corpos-de-prova moldados. Os resultados demonstraram que as macrofibras poliméricas não obtiveram desempenho mecânico satisfatório, principalmente no que se refere à resistência residual pós-fissuração do tubo. Tal desempenho só foi obtido com a utilização de fibras de aço, o qual apresentou o dobro da capacidade resistente residual das macrofibras poliméricas para o mesmo teor em volume. Dessa forma, os tubos de concreto de 1 m de diâmetro reforçado com fibras, analisados neste estudo, apresentaram dificuldade de obtenção do desempenho pós-fissuração, o que dificultou a aprovação nos critérios da NBR 8890:2007. Assim, para que estes tubos pudessem atingir as cargas especificadas nesta norma seria preciso aumentar o teor ou o comprimento das fibras, o que iria dificultar a moldagem dos tubos. / Brazil requires a wide deployment of systems for drainage and, especially, sewage collection and treatment. To resolve this issue may be interesting the use of concrete pipes. Although recent, the study of fiber reinforced concrete pipes has already enabled the revision of the Brazilian standard NBR 8890:2007. This standard allows the use of fibers as the sole reinforcement for the components. However, only steel fibers are allowed. Despite the possibility that fibers can provide a potential higher durability compared to the conventionally reinforced concrete pipes, there is also the possibility of extension of the pipe lifetime by the use of polymeric fibers. This kind of fiber is resistant to electrolytic corrosion and, nowadays, is available in the Brazilian market. The remaining doubt is if these fibers can provide the same mechanical performance of steel fibers. Thus, this work has the main objective of carried out a comparative evaluation of the mechanical performance of polymeric fibers and steel fibers reinforcement for drainage concrete pipes. In order to enable these assessments, a verification of mechanical performance was made through the crushing test, where the diametric displacement of the pipes was also measured. In addition, tests were made in order to measure the concrete water absorption, the fiber actual consumption determination in cores extracted from the pipes, and compressive strength determination. The results showed that the polymeric macrofibers did not reach satisfactory performance, especially regarding to the residual post-crack strength. Only the steel fiber reinforced concrete pipes were able to fit the requirements, which had twice the post-crack residual strength presented by the polymeric fibers with the same content by volume. Thus, the fibers reinforced concrete pipes with diameter of one meter, used in this experimental program, showed difficult to obtaining the post-cracking behavior, which turns difficult the approval in the Brazilian standard criteria. So, the pipes reinforced with polymeric fibers could only possibly reach the load levels specified for post-crack strength by the use of a higher content or an increased length of fibers, which would turns much more difficult the concrete pipes production.
|
500 |
Resistência ao cisalhamento de solos reforçados com fibras plásticas / not availableJanice Mesquita Teodoro 20 April 1999 (has links)
Este trabalho aborda o comportamento de dois solos (uma argila e uma areia), reforçados com fibras plásticas de polipropileno. Os solos foram compactados no teor de umidade ótimo e peso específico seco máximo e foram misturados com fibras de diferentes teores e comprimentos. Os resultados dos ensaios de compressão simples foram usados para selecionar os teores e comprimentos ótimos de fibras. Os resultados mostraram que a resistência do solo arenoso cresceu com o aumento do teor e comprimento das fibras e o solo argiloso apresentou acréscimo de resistência, com o aumento do teor até o comprimento de fibra de 10 mm. As curvas tensão-deformação dos ensaios triaxiais, para solos com e sem reforço foram similares, com uma resistência de pico definida e pequena redução de queda de tensão pós pico. As amostras de solo arenoso apresentaram considerável aumento de resistência, com o aumento do teor e comprimento das fibras. Pequenos painéis, fabricados com o solo argiloso (300 x 300 x 100) mm, mostraram que a presença da fibra pode reduzir a magnitude das trincas quando comparados com o solo sem reforço. / This work presents the behavior of two soils (clay and sandy) reinforced with polypropylene plastic fibers. The soils were compacted at the optimum moisture content and maximum dry unit weight and were mixed with fibers of different lengths and contents. Unconfined compressive tests results were used to select the optimum fiber length and content. The results showed that the granular soil strength increased with increasing fiber length and content. The cohesive soil, on the other hand, showed strength up to fiber length of 10 mm. Stress - strain curves from triaxial tests for both reinforced and unreinforced cohesive soil were similar with a defined peak strength and small post peak reduction. Granular soil samples presented considerable strength increases with the increases of length and fiber content. Small panels fabricated with the reinforced cohesive soil (300 x 300 x 100) mm, showed that the presence of fiber can reduce crack magnitude when compared with the unreinforced soil.
|
Page generated in 0.0579 seconds