• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação dos efeitos da radiação ionizante em compósitos de PCL/PLLA com fibra de coco / Study of the effect of ionizing radiation on composites based on PCL/PLLA and coconut fiber

Kodama, Yasko 02 February 2011 (has links)
O problema do resíduo plástico vem se tornando crucial nos últimos anos no que concerne aos problemas ambientais. Neste cenário, a preparação de compósitos baseados em polímeros e fibra naturais, tais como as da casca de coco, levaria à redução do custo do produto final e a consequente diminuição da quantidade de resíduo do agronegócio descartado no meio ambiente. No Brasil, a produção anual de coco é por volta de 1,5 bilhões de frutos em uma área cultivada de 2,7 milhões de hectares. Porém, a fibra da casca do coco tem sido pouco utilizada para aplicações industriais, representando um componente importante no montante de resíduo. Por outro lado, polímeros biodegradáveis vêm atraindo a atenção da população como um todo, em razão dos problemas ambientais decorrentes do uso crescente de materiais poliméricos de degradabilidade baixa descartados como resíduos. Adicionalmente, quando se considera uma aplicação na área médica, torna-se necessário que os produtos sejam esterilizados, e a radiação ionizante é amplamente utilizada para a esterilização de artefatos médico-cirúrgicos. Neste trabalho, foram estudados blendas e compósitos baseados em dois polímeros comerciais: poli(e- caprolactona), PCL, e poli(ácido láctico), PLLA, e fibra de coco verde. Estes polímeros, além de biodegradáveis, são também biocompatíveis, por isso, é importante conhecer o efeito da radiação ionizante nestes materiais. As amostras foram irradiadas com raios gama proveniente de fonte de 60Co e com feixe de elétrons, com doses de radiação no intervalo de 10 kGy a 1 MGy. As amostras não irradiadas e irradiadas foram ensaiadas por diversas técnicas analíticas e de caracterização que permitiram conhecer suas propriedades de modo a viabilizar sua aplicação como precursores de artefatos médico-cirúrgicos. Não foi possível observar a influência da dose de radiação na estabilidade térmica das blendas irradiadas no intervalo de dose estudado. A adição de fibra de coco parece não influenciar significativamente a estabilidade térmica dos compósitos não irradiado e irradiados até 100 kGy. O processo de acetilação das fibras mostrou-se ineficiente na promoção da interação na interface das fibras com a matriz polimérica, conforme esperado inicialmente. Isto foi evidenciado pela ligeira redução da resistência à tração observada nas amostras dos compósitos. Apesar disso, esta redução não chega a afetar negativamente as propriedades mecânicas das blendas comparativamente com as dos compósitos. A radiação ionizante também não promoveu interação detectável entre as fibras e a matriz polimérica. Os resultados dos testes de citotoxicidade indicaram que os produtos de lixiviação dos homopolímeros, blendas e compósitos não liberaram quantidade de substâncias suficientes que provoquem morte celular significativa. O processamento térmico devido ao procedimento para a obtenção dos compósitos e o tratamento químico prévio de acetilação das fibras contribuíram para a redução da carga microbiológica. Além disso, reduzindo-se a carga microbiológica inicial, foi possível reduzir as doses necessárias para realizar a esterilização. Os resultados dos ensaios de degradabilidade enzimática e em solo simulado indicam que os materiais estudados não são afetados negativamente pelo processamento por radiação. Embora a adição das fibras tenha reduzido levemente o processo de degradação, os compósitos continuaram degradando ao longo do tempo. Os produtos fabricados utilizando os materiais estudados neste trabalho poderão ser processados por radiação até doses de 100 kGy sem prejuízo à sua biodegradabilidade. / Plastic solid waste has become a serious problem recently concerning environmental impact. In this scenario, preparation of polymers and composites based on coconut husk fiber would lead to a reduction on the cost of the final product. Additionally, it will reduce the amount of agribusiness waste disposal in the environment. In Brazil, coconut production is around 1.5 billion fruits by year in a cultivated area of 2.7 million hectares, but the coconut husk fiber has not been used much for industrial applications. Moreover, biodegradable polymers have attracted the attention of the most part of population, due to the environmental issues arising from the increasing use of polymeric materials of low degradability discharged as waste residue. Besides, when considering an application in the medical field, it is necessary that the products are sterilized and, ionizing radiation is widely used to sterilize medical and surgical devices. In this work, it was studied blends and composites based on two commercial polymers: poly (e-caprolactone), PCL, and poly (lactic acid), PLLA, and coconut fiber. Those polymers are biodegradable as well as biocompatible, so it is important to know the effect of ionizing radiation in these materials. Samples were irradiated with gamma rays from 60Co source and electron beam wtih radiation doses ranging from 10 kGy up to 1 MGy. The non-irradiated and irradiated samples were studied using several analytical techniques and characterization assays that allowed understanding their properties in order to enable their application as precursors for medical and surgical devices. Thermal stability of non irradiated and irradiated composites up to 100 kGy radiation dose is not affected significantly by the coconut fiber incorporation to the polymeric matriz. Acetylation of fibers was not effective in order to induce any interaction between fibers and polymeric matrix, as expected. That was verified by the slight reduction of stress strenght observed in the composites specimens. Besides that, this reduction did not affect negatively mechanical properties of blends compared to the composites. Ionizing radiation neither promoted detectable interaction between polymeric matrix and fibers. Citotoxicity tests indicated that lixiviation products from homopolymers, blend and composites did not release sufficient amount of substances to induce significant celular death. Thermal processing used to obtain composites and previous acetylations by chemical treatment contributed to the bioburden reduce. Furthermore, reducing initial bioburden it was possible to diminish radiation doses needed to perform sterilization. Enzymatic and soil degradation were not negatively affected by radiation processing. Even though fiber incorporation to the polymer blend slightly reduced degradation process, composites continued degrading through time. Artifacts produced by means of the materials studied here can be radiation processed with doses up to 100 kGy without prejudice of their biodegradability.
2

Avaliação dos efeitos da radiação ionizante em compósitos de PCL/PLLA com fibra de coco / Study of the effect of ionizing radiation on composites based on PCL/PLLA and coconut fiber

Yasko Kodama 02 February 2011 (has links)
O problema do resíduo plástico vem se tornando crucial nos últimos anos no que concerne aos problemas ambientais. Neste cenário, a preparação de compósitos baseados em polímeros e fibra naturais, tais como as da casca de coco, levaria à redução do custo do produto final e a consequente diminuição da quantidade de resíduo do agronegócio descartado no meio ambiente. No Brasil, a produção anual de coco é por volta de 1,5 bilhões de frutos em uma área cultivada de 2,7 milhões de hectares. Porém, a fibra da casca do coco tem sido pouco utilizada para aplicações industriais, representando um componente importante no montante de resíduo. Por outro lado, polímeros biodegradáveis vêm atraindo a atenção da população como um todo, em razão dos problemas ambientais decorrentes do uso crescente de materiais poliméricos de degradabilidade baixa descartados como resíduos. Adicionalmente, quando se considera uma aplicação na área médica, torna-se necessário que os produtos sejam esterilizados, e a radiação ionizante é amplamente utilizada para a esterilização de artefatos médico-cirúrgicos. Neste trabalho, foram estudados blendas e compósitos baseados em dois polímeros comerciais: poli(e- caprolactona), PCL, e poli(ácido láctico), PLLA, e fibra de coco verde. Estes polímeros, além de biodegradáveis, são também biocompatíveis, por isso, é importante conhecer o efeito da radiação ionizante nestes materiais. As amostras foram irradiadas com raios gama proveniente de fonte de 60Co e com feixe de elétrons, com doses de radiação no intervalo de 10 kGy a 1 MGy. As amostras não irradiadas e irradiadas foram ensaiadas por diversas técnicas analíticas e de caracterização que permitiram conhecer suas propriedades de modo a viabilizar sua aplicação como precursores de artefatos médico-cirúrgicos. Não foi possível observar a influência da dose de radiação na estabilidade térmica das blendas irradiadas no intervalo de dose estudado. A adição de fibra de coco parece não influenciar significativamente a estabilidade térmica dos compósitos não irradiado e irradiados até 100 kGy. O processo de acetilação das fibras mostrou-se ineficiente na promoção da interação na interface das fibras com a matriz polimérica, conforme esperado inicialmente. Isto foi evidenciado pela ligeira redução da resistência à tração observada nas amostras dos compósitos. Apesar disso, esta redução não chega a afetar negativamente as propriedades mecânicas das blendas comparativamente com as dos compósitos. A radiação ionizante também não promoveu interação detectável entre as fibras e a matriz polimérica. Os resultados dos testes de citotoxicidade indicaram que os produtos de lixiviação dos homopolímeros, blendas e compósitos não liberaram quantidade de substâncias suficientes que provoquem morte celular significativa. O processamento térmico devido ao procedimento para a obtenção dos compósitos e o tratamento químico prévio de acetilação das fibras contribuíram para a redução da carga microbiológica. Além disso, reduzindo-se a carga microbiológica inicial, foi possível reduzir as doses necessárias para realizar a esterilização. Os resultados dos ensaios de degradabilidade enzimática e em solo simulado indicam que os materiais estudados não são afetados negativamente pelo processamento por radiação. Embora a adição das fibras tenha reduzido levemente o processo de degradação, os compósitos continuaram degradando ao longo do tempo. Os produtos fabricados utilizando os materiais estudados neste trabalho poderão ser processados por radiação até doses de 100 kGy sem prejuízo à sua biodegradabilidade. / Plastic solid waste has become a serious problem recently concerning environmental impact. In this scenario, preparation of polymers and composites based on coconut husk fiber would lead to a reduction on the cost of the final product. Additionally, it will reduce the amount of agribusiness waste disposal in the environment. In Brazil, coconut production is around 1.5 billion fruits by year in a cultivated area of 2.7 million hectares, but the coconut husk fiber has not been used much for industrial applications. Moreover, biodegradable polymers have attracted the attention of the most part of population, due to the environmental issues arising from the increasing use of polymeric materials of low degradability discharged as waste residue. Besides, when considering an application in the medical field, it is necessary that the products are sterilized and, ionizing radiation is widely used to sterilize medical and surgical devices. In this work, it was studied blends and composites based on two commercial polymers: poly (e-caprolactone), PCL, and poly (lactic acid), PLLA, and coconut fiber. Those polymers are biodegradable as well as biocompatible, so it is important to know the effect of ionizing radiation in these materials. Samples were irradiated with gamma rays from 60Co source and electron beam wtih radiation doses ranging from 10 kGy up to 1 MGy. The non-irradiated and irradiated samples were studied using several analytical techniques and characterization assays that allowed understanding their properties in order to enable their application as precursors for medical and surgical devices. Thermal stability of non irradiated and irradiated composites up to 100 kGy radiation dose is not affected significantly by the coconut fiber incorporation to the polymeric matriz. Acetylation of fibers was not effective in order to induce any interaction between fibers and polymeric matrix, as expected. That was verified by the slight reduction of stress strenght observed in the composites specimens. Besides that, this reduction did not affect negatively mechanical properties of blends compared to the composites. Ionizing radiation neither promoted detectable interaction between polymeric matrix and fibers. Citotoxicity tests indicated that lixiviation products from homopolymers, blend and composites did not release sufficient amount of substances to induce significant celular death. Thermal processing used to obtain composites and previous acetylations by chemical treatment contributed to the bioburden reduce. Furthermore, reducing initial bioburden it was possible to diminish radiation doses needed to perform sterilization. Enzymatic and soil degradation were not negatively affected by radiation processing. Even though fiber incorporation to the polymer blend slightly reduced degradation process, composites continued degrading through time. Artifacts produced by means of the materials studied here can be radiation processed with doses up to 100 kGy without prejudice of their biodegradability.
3

Avaliação da biodegradação de compósitos de poliéster e amido com fibra de coco verde em solo simulado e ambiente marinho / Evaluation of the biodegradation of a polymer composite and starch and green coconut fiber in simulated soil and the marine environment

Renideivi Paula Souza 27 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A utilização de polímeros biodegradáveis é uma das formas de minimizar o grande volume de descartes de materiais poliméricos que tendem a aumentar cada vez mais causando dano ao meio ambiente. Existem vários métodos de avaliação de biodegradação de polímeros que podem contribuir para o desenvolvimento de novos materiais biodegradáveis. Nessa dissertação foi avaliada a biodegradação do compósito de matriz de polímero comercial à base de poliéster e amido e fibra de coco verde. Foram usados dois métodos, em solo simulado e em ambiente marinho. A biodegradação dos compósitos foi avaliada através das análises de: Perda de massa, Microscopia ótica (MO), Microscopia Eletrônica de Varredura (MEV), Calorimetria Diferencial de Varredura (DSC), Análise Termogravimétrica (TGA) e Espectroscopia na região do Infravermelho (FTIR). Além disso, foi realizada uma comparação entre desempenho de biodegradação do material nos dois ambientes. A velocidade de biodegradação no ambiente marinho é maior do que no solo simulado / The use of biodegradable polymers is one of the ways to minimize the large volume discharges of polymer materials which tend to increase causing more damage to the environment. There are several methods for evaluation of polymer biodegradation which can contribute to the development of new biodegradable materials. In this dissertation was evaluated the biodegradation of a polymer composite commercial with matrix based on polyester and starch and green coconut fiber. Two methods were used, simulated soil and marine environment. The biodegradation of the composites was evaluated by mass loss, optical microscopy (OM), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Infrared Spectroscopy (FTIR). In addition, it was performed a comparison between the biodegradation of the material in both environments. The biodegradation rate of the marine environment is greater than the simulated ground
4

Avaliação da biodegradação de compósitos de poliéster e amido com fibra de coco verde em solo simulado e ambiente marinho / Evaluation of the biodegradation of a polymer composite and starch and green coconut fiber in simulated soil and the marine environment

Renideivi Paula Souza 27 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A utilização de polímeros biodegradáveis é uma das formas de minimizar o grande volume de descartes de materiais poliméricos que tendem a aumentar cada vez mais causando dano ao meio ambiente. Existem vários métodos de avaliação de biodegradação de polímeros que podem contribuir para o desenvolvimento de novos materiais biodegradáveis. Nessa dissertação foi avaliada a biodegradação do compósito de matriz de polímero comercial à base de poliéster e amido e fibra de coco verde. Foram usados dois métodos, em solo simulado e em ambiente marinho. A biodegradação dos compósitos foi avaliada através das análises de: Perda de massa, Microscopia ótica (MO), Microscopia Eletrônica de Varredura (MEV), Calorimetria Diferencial de Varredura (DSC), Análise Termogravimétrica (TGA) e Espectroscopia na região do Infravermelho (FTIR). Além disso, foi realizada uma comparação entre desempenho de biodegradação do material nos dois ambientes. A velocidade de biodegradação no ambiente marinho é maior do que no solo simulado / The use of biodegradable polymers is one of the ways to minimize the large volume discharges of polymer materials which tend to increase causing more damage to the environment. There are several methods for evaluation of polymer biodegradation which can contribute to the development of new biodegradable materials. In this dissertation was evaluated the biodegradation of a polymer composite commercial with matrix based on polyester and starch and green coconut fiber. Two methods were used, simulated soil and marine environment. The biodegradation of the composites was evaluated by mass loss, optical microscopy (OM), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Infrared Spectroscopy (FTIR). In addition, it was performed a comparison between the biodegradation of the material in both environments. The biodegradation rate of the marine environment is greater than the simulated ground
5

[en] STUDY OF THE THERMAL DECOMPOSITION OF GREEN COCONUT FIBER IN THE PRESENCE OF A NANO STRUCTURED CATALYST / [pt] ESTUDO DA DECOMPOSIÇÃO TÉRMICA DA FIBRA DO COCO VERDE NA PRESENÇA DE UM CATALISADOR NANO ESTRUTURADO

FELIPE ZANONE RIBEIRO MONTEIRO 06 February 2018 (has links)
[pt] Com aumento da preocupação político-ambiental, torna-se imperativo desenvolver processos eficientes em termos econômicos e energéticos para a produção sustentável de combustíveis e produtos químicos. A liquefação hidrotérmica (HTL) é um processo para a transformação de materiais orgânicos, tais como bio-resíduos ou biomassa, em óleo bruto, em temperaturas usualmente inferiores a 400 graus Celsius sob altas pressões na presença de água, e, dependendo do processo, de um catalisador. Nesse contexto, é importante entender o comportamento de degradação térmica do material em atmosfera inerte, no sentido de se investigar a possibilidade de quebra das cadeias poliméricas inicias em moléculas menores, que, mediante pressão, poderão ser convertidas em novos produtos. Assim sendo, os objetivos do presente trabalho estão associados ao estudo termogravimétrico (TG) da degradação térmica da fibra do coco verde na presença de ferrita de cobalto (Fe2CoO4), utilizada no intuito de gerar um efeito catalítico, acelerando a degradação térmica das estruturas poliméricas presentes, e, que possa ser usada posteriormente em uma rota HTL. Os catalisadores foram produzidos a 1000 graus Celsius em diferentes tempos de calcinação (3h, 6h e 9h), sendo, nas misturas com a fibra, a fração mássica de óxido igual a 50 por cento. As amostras de interesse para a pesquisa foram caracterizadas mediante diferentes técnicas, tais como, a microscopia eletrônica de varredura, para o estudo da morfologia e composição elementar, difração de raios X, para a quantificação das fases presentes nas amostras de ferrita, e espectroscopia de infravermelho, visando à identificação das principais ligações químicas nas fibras, tanto antes quanto durante o tratamento térmico. Dentre todos os ensaios de TG realizados, os experimentos com o catalisador calcinado durante 9h homogeneizado com gral de ágata foi o que mostrou uma melhor resposta com relação à degradação térmica das fibras. Os resultados sugerem ainda que, tanto o tempo de calcinação, quanto a natureza do processo de mistura apresentam efeitos significativos sobre a cinética de degradação. / [en] With increasing political-environmental concern, it becomes imperative to develop efficient processes in economic and energy terms for the sustainable production of fuels and chemical products. Hydrothermal liquefaction (HTL) is a process for the transformation of organic materials such as bio-waste or biomass into crude oil at temperatures usually below 400 degrees Celsius under high pressures in the presence of water and, depending on the process, of a catalyst. In this context, it is important to understand the behavior of thermal degradation of the material under inert atmosphere, in order to investigate the possibility of breaking the initial polymer chains into smaller molecules, which, under pressure, can be converted into new products. The objectives of the present work are associated to the thermogravimetric study (TG) in the thermal degradation of the green coconut fiber in the presence of a cobalt ferrite (Fe2CoO4), used to generate a catalytic effect, accelerating the thermal degradation of the polymeric structures present, and which can be used later on an HTL route. The catalysts were produced at 1000 degrees Celsius at different calcination times (3h, 6h and 9h) and in the fiber mixtures, the oxide mass fraction was equal to 50 percent. The samples of interest for the research were characterized by different techniques, such as scanning electron microscopy, for the study of the morphology and elemental composition, X-ray diffraction, for the quantification of the phases present in the ferrite samples, and spectroscopy of Infrared, in order to identify the main chemical bonds in the fibers, both before and during the heat treatment. Among all the TG assays performed, the experiments with the catalyst calcined for 9h homogenized with mortar and pestle showed the best to the thermal degradation of the fibers. The results further suggest that both the calcination time and the nature of the blending process have significant effects on the degradation kinetics.

Page generated in 0.0671 seconds