• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 21
  • 21
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Orientation of fibres in suspensions flowing over a solid surface

Carlsson, Allan January 2007 (has links)
<p>The orientation of fibres suspended in a viscous fluid, flowing over a solid surface, has been studied experimentally. A shear layer was generated, by letting the suspension flow down an inclined plate. Far upstream from the measuring section the suspension was accelerated to obtain an initial orientation of the fibres aligned with the flow direction. A CCD-camera was used to visualise the fibres. The velocity profile of the fibres coincided with the theoretical expression for fully developed flow of Newtonian liquid down an inclined wall.</p><p>The orientation of the fibres was analysed in planes parallel to the solid surface. At distances from the wall larger than one fibre length the fibres performed a tumbling motion in the flow-gradient plane in what appeared to be Jeffery-like orbits. Closer to the wall a difference was found between fibres of aspect ratio <i>r</i><i>p </i>= 10 and 40. The longer fibres of <i>r</i><i>p </i>= 40 kept their orientation, aligned with the flow, also in the near wall region. For the shorter fibres the orientation shifted gradually, to orientations closer to the vorticity axis, when the distance from the wall was decreased. In the very proximity to the wall the fibres were aligned with the vorticity, perpendicular to the direction of the flow. Another distinction, most likely related to the fibre orientation, was seen in the wall normal concentration profile. Due to sedimentation effects fibres accumulated in the near wall region. For fibres of <i>r</i><i>p </i>= 10 a peak in concentration was found at the wall, while for r=40 the maximum concentration was found approximately half a fibre length from the wall. It is previously known that a fibre can interact with the wall in what is referred to as a "pole vaulting" motion away from the wall. It is suggested, as a likely explanation to the location of the maximum concentration, that fibres of <i>r</i><i>p </i>= 40 perform this motion, while fibres of <i>rp</i>=10 do not.</p><p>In another experiment the surface of the wall was modified with ridges. For fibres of <i>r</i><i>p </i>= 10 there were no longer any fibres oriented perpendicular to the flow direction in the near wall region.</p><p>The main application in mind throughout this work is papermaking. The study is considered to be of fundamental character and is not applicable in a direct sense. The difference between the flow situation in the experiments and the paper machine is discussed further.</p>
12

Orientation of fibres in suspensions flowing over a solid surface

Carlsson, Allan January 2007 (has links)
The orientation of fibres suspended in a viscous fluid, flowing over a solid surface, has been studied experimentally. A shear layer was generated, by letting the suspension flow down an inclined plate. Far upstream from the measuring section the suspension was accelerated to obtain an initial orientation of the fibres aligned with the flow direction. A CCD-camera was used to visualise the fibres. The velocity profile of the fibres coincided with the theoretical expression for fully developed flow of Newtonian liquid down an inclined wall. The orientation of the fibres was analysed in planes parallel to the solid surface. At distances from the wall larger than one fibre length the fibres performed a tumbling motion in the flow-gradient plane in what appeared to be Jeffery-like orbits. Closer to the wall a difference was found between fibres of aspect ratio rp = 10 and 40. The longer fibres of rp = 40 kept their orientation, aligned with the flow, also in the near wall region. For the shorter fibres the orientation shifted gradually, to orientations closer to the vorticity axis, when the distance from the wall was decreased. In the very proximity to the wall the fibres were aligned with the vorticity, perpendicular to the direction of the flow. Another distinction, most likely related to the fibre orientation, was seen in the wall normal concentration profile. Due to sedimentation effects fibres accumulated in the near wall region. For fibres of rp = 10 a peak in concentration was found at the wall, while for r=40 the maximum concentration was found approximately half a fibre length from the wall. It is previously known that a fibre can interact with the wall in what is referred to as a "pole vaulting" motion away from the wall. It is suggested, as a likely explanation to the location of the maximum concentration, that fibres of rp = 40 perform this motion, while fibres of rp=10 do not. In another experiment the surface of the wall was modified with ridges. For fibres of rp = 10 there were no longer any fibres oriented perpendicular to the flow direction in the near wall region. The main application in mind throughout this work is papermaking. The study is considered to be of fundamental character and is not applicable in a direct sense. The difference between the flow situation in the experiments and the paper machine is discussed further. / QC 20101103
13

Mechanical behaviour of thermally bonded bicomponent fibre nonwovens : experimental analysis and numerical modelling

Demirci, Emrah January 2011 (has links)
In contrast to composites and woven fabrics, nonwoven materials have a unique web structure, which is composed of randomly oriented fibres bonded in a pattern by mechanical, thermal or chemical techniques. The type of nonwovens studied in this research is a thermally bonded one with polymer-based bicomponent fibres. Such fibres have a core/sheath structure with outer layer (sheath) having a lower melting temperature than that of the core. In thermal bonding of such fibres, as the hot calender with an engraved pattern contacts the fibrous web, bond points are formed thanks to melting of the sheath material. Molten sheath material acts as an adhesive while core parts of the fibres remain fully intact in the bond points. On the other hand, web regions, which are not in contact with the hot engraved pattern, remain unaffected and form the fibre matrix that acts as a link between bond points. With two distinct regions, namely, bond points and fibre matrix, with different structures, nonwovens exhibit a unique deformation behaviour. This research aims to analyse the complex mechanical behaviour of thermally bonded bicomponent fibre nonwoven materials using a combination of experimental and numerical methods. A novel approach is introduced in the thesis to predict the complex mechanical behaviour of thermally bonded bicomponent fibre nonwovens under various threedimensional time-dependent loading conditions. Development of the approach starts with experimental studies on thermally bonded bicomponent fibre nonwovens to achieve a better understating of their complex deformation characteristics. Mechanical performance of single bicomponent fibres is investigated with tensile and relaxation tests since they are the basic constituents of nonwoven fabrics. The fabric microstructure, which is one of the most important factors affecting its mechanical behaviour, is examined with scanning electron microscopy and X-ray micro computed tomography techniques. At the final part of experimental studies, mechanical response of thermally bonded bicomponent fibre nonwovens is characterised with several mechanical tests. (Continues...).
14

Fibre Orientation Modelling Applied to Contracting Flows Related to Papermaking

Hyensjö, Marko January 2008 (has links)
The main goal of this work was to develop numerical models for studying the behaviour of fibres in an accelerated flow. This is of special interest for e.g. papermaking. The early stage of the paper manufacturing process determines most of the final properties of a paper sheet. The complexity of studying the flow of fibre suspensions both experimentally and numerically emphasises a need for new ideas and developments. By means of solving the evolution of a convective-dispersion equation, i.e. the Fokker-Planck equation, a fully 3D approach with respect to the position and the two fibre angles, polar and azimuthal angles, following a streamline is presented. As an input to the fibre orientation model the turbulent flow field is solved by Computational Fluid Dynamics (CFD) with second-order closure in the turbulence model. In this work two new hypotheses have been presented for the variation of the non-dimensional rotational diffusivity with non-dimensional fibre length, Lf /η and the Reynolds number based on the Taylor micro-scale of the turbulence, Reλ Parameters for the two new hy- potheses and earlier models are determined with the aim of achieving a general relation and a value of the rotational dispersion coeffcient of stiff fibres in an anisotropic turbulent fluid flow. Earlier modelling work has been focused on solving the planar approach, i.e. assuming all fibres to be in one plane. This planar approach is discussed and compared with the fully 3D approach and its validity is evaluated. The optimization of parameters for the different hypotheses correlated on a central streamline, showed a good agreement with an independent experimental result in the undisturbed region. Moreover, it is particularly interesting that the boundary layer region and the wake region are predicted fairly well and the phenomena are well described, which has not been the case earlier. It seems that the new hypothesis based on the variation of the non-dimensional fibre length, Lf /η gives the best correlation in these shear-layer regions. Further- more it was established that the planar approach fails to predict shear layers, i.e. the boundary layer and the wake regions. As emphasized in the theory section, the planar formulation is strictly valid only if all fibres are oriented in one plane, which is not the case in the shear layers. In the undisturbed region, the 3D and the planar approaches, agree in their results. This leads to the conclusion that both approaches are suitable when shear layers are not studied. / QC 20100812
15

Fibre orientation and breakage in glass fibre reinforced polymer composite systems : experimental validation of models for injection mouldings : validation of short and long fibre prediction models within Autodesk Simulation Moldflow Insight 2014

Parveen, Bushra January 2014 (has links)
End-gated and centre gated mouldings have been assessed with varying thickness and sprue geometries for the centre gate. Alternative image analysis techniques are used to measure the orientation and length of injection moulded short and long fibres composite components. The fibre orientation distribution (FOD) measurements for both geometries have been taken along the flow path. In shear flow the FOD changes along the flow path, however the FOD remains relatively constant during expansion flow. The core width and FOD at the skin within a long glass fibre (LGF) specimen is different in comparison to a short glass fibre (SGF) specimen. Fibre length measurements have been taken from the extrudate, sprue and 2 positions within the centre gate cavity. The size of the sprue has little influence on fibre breakage if the moulding is more than 1 mm thick The SGF FOD prediction models within Autodesk Simulation Moldflow Insight 2014 (ASMI) have been validated against measured SGF data. At present, by default, the models over-predict the < cos2θ > for most geometries. When the coefficients are tailored for each model, drastic improvements are seen in the FOD prediction. The recently developed SGF RSC model accurately predicts the FOD in shear, in a thin geometry, whereas the Folgar-Tucker model predicts the FOD accurately in expansion flow. The measured LGF fibre length distribution (FLD) and FOD have been validated against the LGF prediction models. The LGF models are currently under predicting the breakage and over-predicting < cos2θ >. The breakage prediction improves if measured FLD of the extrudate is input into the model.
16

Fibre Orientation and Breakage in Glass Fibre Reinforced Polymer Composite Systems: Experimental Validation of Models for Injection Mouldings. Validation of Short and Long Fibre Prediction Models within Autodesk Simulation Moldflow Insight 2014

Parveen, Bushra January 2014 (has links)
End-gated and centre gated mouldings have been assessed with varying thickness and sprue geometries for the centre gate. Alternative image analysis techniques are used to measure the orientation and length of injection moulded short and long fibres composite components. The fibre orientation distribution (FOD) measurements for both geometries have been taken along the flow path. In shear flow the FOD changes along the flow path, however the FOD remains relatively constant during expansion flow. The core width and FOD at the skin within a long glass fibre (LGF) specimen is different in comparison to a short glass fibre (SGF) specimen. Fibre length measurements have been taken from the extrudate, sprue and 2 positions within the centre gate cavity. The size of the sprue has little influence on fibre breakage if the moulding is more than 1 mm thick The SGF FOD prediction models within Autodesk Simulation Moldflow Insight 2014 (ASMI) have been validated against measured SGF data. At present, by default, the models over-predict the <cos2θ> for most geometries. When the coefficients are tailored for each model, drastic improvements are seen in the FOD prediction. The recently developed SGF RSC model accurately predicts the FOD in shear, in a thin geometry, whereas the Folgar-Tucker model predicts the FOD accurately in expansion flow. The measured LGF fibre length distribution (FLD) and FOD have been validated against the LGF prediction models. The LGF models are currently under predicting the breakage and over-predicting <cos2θ>. The breakage prediction improves if measured FLD of the extrudate is input into the model. / Autodesk Ltd.
17

Modélisation du comportement des composites à fibres courtes non-alignées en dynamique / Constitutive behaviour modelling of short fibre reinforced composites under dynamic loading

Nciri, Mariem 11 May 2017 (has links)
L’utilisation de composites à matrice thermoplastique renforcée par fibres courtes (TRFC) connait une forte croissance pour une large gamme d’applications industrielles pour des conditions de chargement extrêmes (e.g. pare-chocs d’automobiles). Il est donc indispensable de développer des modèles de comportement des TRFC tenant compte des spécificités du matériau pour une large gamme de vitesse de déformation. Toutefois, le comportement de ces composites est complexe. Cette complexité est due, en premier lieu, au comportement viscoélastique (VE)-viscoplastique (VP) de la matrice avec une sensibilité à la pression. A cela s’ajoute les caractéristiques complexes du renfort en termes de distributions d’orientation des fibres courtes. De plus, le comportement de ces composites est affecté par des phénomènes d’endommagement coexistants (e.g. endommagement de la matrice et décohésion l’interface fibre/matrice). Dans ce travail, un modèle permettant la prise en compte de l’ensemble de ces phénomènes est proposé. Sa formulation est basée sur la décomposition du matériau en un milieu matriciel et plusieurs milieux de fibres, sur la base d’une décomposition additive du potentiel thermodynamique. Cette approche permet une implémentation simplifiée avec une résolution successive (mais non indépendante) du comportement de chaque milieu. Un avantage immédiat est la possibilité de prendre en compte tout type de comportement matriciel et tout type d’orientation. L’interface fibre/matrice, siège de la transmission de l’effort est modélisée par un transfert par cisaillement, avec sur une hypothèse locale d’iso-déformation dans la direction de la fibre. L’endommagement ductile de la matrice est pris en compte par un modèle d’endommagement anisotrope. La dégradation de l’interface fibre/matrice est décrite par un modèle de décohésion initiée en pointe de fibres. Un critère de rupture se basant sur le taux maximal de vide crée par décohésion est enfin introduit. La caractérisation du modèle est basée sur des campagnes d’essais quasi-statiques et dynamiques pour le cas de polypropylène pur et renforcé par fibres courtes de verre, à différents angles de chargement par rapport à la direction d’injection. Ces essais sont complétés par des observations au microtomographe permettant la caractérisation des distributions d’orientation locale des fibres. Des observations au MEB ont enfin permis de constater une éventuelle influence de la vitesse de sollicitation sur les mécanismes d’endommagement. / Short fibre-reinforced composites are commonly used in a variety of engineering applications, including automotive and aerospace industry. Today, their use is progressively extended to parts possibly subjected to severe loading conditions (e.g. crash...), characterised by high strain rates. Therefore, an efficient modelling that takes into account material’s specificities at a large strain rate range is needed. A constitutive model of viscous behaviour of short-fibre reinforced composites (SFRC) where complex distributions of fibre orientations are taken into account is proposed in this work. The approach considered for the computation of composite macroscopic behavior is based on an additive decomposition of the state potential. The SFRC is assimilated to an assembly of several fibre media embedded in a polymeric matrix medium. One of the main assets of this approach is the possibility to model reinforcement with complex distributions of fibre orientations. Moreover, this decomposition allows the implementation of complex behaviour laws coupled with damage models. The polymeric matrix behaviour is typically strain-rate sensitive, i.e. viscoelastic-viscoplastic. This property has to be taken into account when the modelling of the composite behaviour over a large range of strain rate is intended. Therefore, a viscoelastic constitutive model, based on generalised Maxwell model, and a viscoplastic correction scheme, based on an overstress approach, are implemented for matrix material. The developed constitutive model is then coupled to two damage laws. The first one is introduced in the framework of Continuum Damage Mechanics in order to model the anisotropic ductile damage behaviour of the matrix material. The second one deals with fibre/matrix interfacial degradation through an interfacial debonding law. In order to identify the parameters involved in the present model, experimental tests are performed (case of polypropylene reinforced with short glass fibres). Microcomputed tomography is used for the characterisation of the fibres distribution of orientation. The efficiency of the proposed model is demonstrated by comparisons between numerical and experimental responses in different loading conditions, including dynamic loadings.
18

Ensaio de compressão de corpo de prova com duplo corte em cunha na avaliação de concretos com baixos teores de fibra de aço. / Double edge wedge splitting test to evaluate fibre reinforced concretes with low steel fibre content.

Borges, Leonardo Augusto Cruz 08 December 2016 (has links)
A melhor maneira de se caracterizar o comportamento mecânico pós-fissuração dos concretos reforçados com fibras (CRF) para fins estruturais é por meio de ensaios que envolvem a ruptura do material à tração direta. Devido às dificuldades de execução destes, comumente se empregam ensaios de tração indireta, com destaque para os ensaios de flexão com sistema fechado. Entretanto, fatores limitantes, como a superestimação da capacidade resistente do compósito em testes de flexão, têm incentivado o desenvolvimento de outros métodos de ensaio mais fidedignos às características do CRF. Este é o caso do ensaio de compressão de corpo de prova com duplo corte em cunha, abreviado como DEWS (do inglês, Double Edge Wedge Splitting), em que o esforço de tração indireta não está associado a uma flecha, como nos ensaios de flexão, mas sim à própria fissuração da matriz de concreto. No DEWS há a possibilidade de avaliação direta da ortotropia do CRF e seu efeito na resistência pós-fissuração no estado limite de serviço (ELS) e último (ELU). Estudos anteriores sobre este ensaio utilizaram sistema aberto, mas se restringiram a avaliar apenas elevados teores de fibra, o que não traz dificuldades à caracterização da resistência residual no ELS. Este trabalho, contudo, buscou o estudo mais acurado a respeito do ensaio DEWS. Os programas experimentais desenvolvidos empregaram concretos reforçados com baixos teores de fibra de aço. Inicialmente, estudou-se a capacidade do ensaio DEWS em identificar o efeito da orientação das fibras na matriz na resistência pós-fissuração do CRF. Essa análise foi correlacionada com os resultados obtidos a partir de ensaios de flexão de prismas feitos como recomendado pela JSCE-SF4, assim, buscou-se avaliar se este teste promove uma superestimação da capacidade de reforço da fibra. Uma outra avaliação centrou-se no fator da taxa de carregamento de ensaio, realizando-se a metodologia DEWS e o teste de flexão (JSCE-SF4: 1984) sob quatro velocidades distintas, com intuito de verificar seu grau de influência no comportamento do material. A partir dos resultados obtidos, o ensaio DEWS mostrou-se aplicável na avaliação da ortotropia de corpos de prova em concretos reforçados com baixos teores de fibra de aço, mesmo com a utilização de sistema aberto e em velocidade de carregamento acima da proposta em literatura. A extensão da instabilidade pós-fissuração obtida a partir do ensaio DEWS foi menor que a encontrada para o ensaio de flexão de prismas. O estudo mostrou que a capacidade resistente pós-fissuração do CRF no ensaio de flexão pode ser até 300% maior do que a mesma resistência medida na direção transversal do prisma. / The best way to characterize the post-cracking behaviour of fibre reinforced concretes (FRC) for structural proposes is through direct tensile tests. As direct tensile tests are difficult to conduce, usually indirect tensile tests are employed, especially bending tests with closed-loop control. However, limiting factors, as the strength capacity overestimation of composites under flexural beams tests had motivated the development of another test procedure aiming to obtain responses closer to FRC basic characteristics. This is the case of Double Edge Wedge Splitting test (DEWS). In this test, the indirect tensile stress is not associated with a deflection - as is common in bending tests - but it is related with the cracking opening of concrete matrix. The DEWS test brings the possibility of direct evaluation of the FRC orthotropic behaviour and its effect in the post-crack strength at the serviceability (SLS) and ultimate (ULS) limit estates. Previous researches about DEWS test were done using open-loop control, but they were limited to higher fibre content. These do not provide difficulties about the residual strength characterization at the SLS. Thus, this study carried out an accurate experimental analysis about DEWS. This experimental programme used only fibre reinforced concrete with low steel fibre volume fractions. The first analysis was based in the DEWS test capacity for identification of the effect of predominant fibre orientation into matrix in the post-crack strength of the FRC. This analysis was linked with the flexural test made with prismatic specimens as recommended by JSCE-SF4 in order to evaluate if it promotes an overestimation of the fibre reinforcement capacity. The other evaluation focused on the test loading rate factor by doing DEWS test and bending test (JSCE-SF4:1984) under four different rates in order to verify its influence on the material behaviour. The results shown that DEWS test was capable to identify the fibre alignment into FRC specimens with low fibre content, even using open-loop control and increasing the load rate. The extension of the instability region on DEWS test response was lower than the provided by the flexural tests. The study also showed that the flexural test could overestimate the post-crack strength capacity of the FRC up 300% in relation to the transversal direction.
19

Simulations of the Dynamics of Fibre Suspension Flows

Lindström, Stefan B. January 2007 (has links)
<p>A new model for simulating non-Brownian flexible fibres suspended in a Newtonian fluid has been developed. Special attention has been given to include realistic flow conditions found in the industrial papermaking process in the key features of the model; it is the intention of the author to employ the model in simulations of the forming section of the paper machine in future studies.</p><p>The model considers inert fibres of various shapes and finite stiffness, interacting with each other through normal, frictional and lubrication forces, and with the surrounding fluid medium through hydrodynamic forces. Fibre-fluid interactions in the non-creeping flow regime are taken into account, and the two-way coupling between the solids and the fluid phase is included by enforcing momentum conservation between phases. The incompressible three-dimensional Navier-Stokes equations are employed to model the motion of the fluid medium.</p><p>The validity of the model has been tested by comparing simulation results with experimental data from the literature. It was demonstrated that the model predicts the motion of isolated fibres in shear flow over a wide range of fibre flexibilities. It was also shown that the model predicts details of the orientation distribution of multiple straight, rigid fibres in a sheared suspension. Model predictions of the viscosity and first normal stress difference were in good agreement with experimental data found in the literature. Since the model is based solely on first-principles physics, quantitative predictions could be made without any parameter fitting.</p> / <p>En ny modell för simulering av rörelserna hos icke-Brownska böjliga fibrer dispergerade i en Newtonsk vätska har utvecklats. Eftersom det är författarens avsikt att modellen skall kunna tillämpas vid simulering av arkformning under de förhållanden som råder i en modern pappersmaskin, har särskilt omsorg givits till att inkludera motsvarande flödesvillkor i modellens giltighetsområde.</p><p>Modellen hanterar fibrer av varierande form, massa och styvhet, som växelverkar sinsemellan via normal-, friktions- och smörjkrafter. Deras växelverkan med den omgivande vätskan sker via hydrodynamiska krafter vid finita Reynolds-tal. Den så kallade tvåvägskopplingen mellan fibrerna och vätskefasen har tagits i beaktande genom att kräva att rörelsemängden bevaras vid interaktionen mellan faserna. Vidare har Navier-Stokes ekvationer för inkompressibla vätskor använts för att beskriva mediets rörelser.</p><p>Modellens giltighet har undersökts genom att jämföra resultat från simuleringar med experimentella data från litteraturen. Det har påvisats att modellen förutsäger rörelsen hos ensamma fibrer i ett skjuvflöde, för vitt skilda fiberflexibiliteter. Det visades också att modellen förutsäger detaljer hos fiberorienteringsdistributionen i suspensioner utsatta för skjuvflöde. Det kunde också konstateras att modellens förutsägelser av fibersuspensioners viskositet och första normalspänningsdifferens under skjuvning väl överensstämde med experimentella data i litteraturen. Kvantitativa förutsägelser har kunnat göras utan någon parameteranpassning, då modellen bygger uteslutande på väletablerade fysikaliska samband inom klassisk mekanik och strömningslära.</p>
20

Ensaio de compressão de corpo de prova com duplo corte em cunha na avaliação de concretos com baixos teores de fibra de aço. / Double edge wedge splitting test to evaluate fibre reinforced concretes with low steel fibre content.

Leonardo Augusto Cruz Borges 08 December 2016 (has links)
A melhor maneira de se caracterizar o comportamento mecânico pós-fissuração dos concretos reforçados com fibras (CRF) para fins estruturais é por meio de ensaios que envolvem a ruptura do material à tração direta. Devido às dificuldades de execução destes, comumente se empregam ensaios de tração indireta, com destaque para os ensaios de flexão com sistema fechado. Entretanto, fatores limitantes, como a superestimação da capacidade resistente do compósito em testes de flexão, têm incentivado o desenvolvimento de outros métodos de ensaio mais fidedignos às características do CRF. Este é o caso do ensaio de compressão de corpo de prova com duplo corte em cunha, abreviado como DEWS (do inglês, Double Edge Wedge Splitting), em que o esforço de tração indireta não está associado a uma flecha, como nos ensaios de flexão, mas sim à própria fissuração da matriz de concreto. No DEWS há a possibilidade de avaliação direta da ortotropia do CRF e seu efeito na resistência pós-fissuração no estado limite de serviço (ELS) e último (ELU). Estudos anteriores sobre este ensaio utilizaram sistema aberto, mas se restringiram a avaliar apenas elevados teores de fibra, o que não traz dificuldades à caracterização da resistência residual no ELS. Este trabalho, contudo, buscou o estudo mais acurado a respeito do ensaio DEWS. Os programas experimentais desenvolvidos empregaram concretos reforçados com baixos teores de fibra de aço. Inicialmente, estudou-se a capacidade do ensaio DEWS em identificar o efeito da orientação das fibras na matriz na resistência pós-fissuração do CRF. Essa análise foi correlacionada com os resultados obtidos a partir de ensaios de flexão de prismas feitos como recomendado pela JSCE-SF4, assim, buscou-se avaliar se este teste promove uma superestimação da capacidade de reforço da fibra. Uma outra avaliação centrou-se no fator da taxa de carregamento de ensaio, realizando-se a metodologia DEWS e o teste de flexão (JSCE-SF4: 1984) sob quatro velocidades distintas, com intuito de verificar seu grau de influência no comportamento do material. A partir dos resultados obtidos, o ensaio DEWS mostrou-se aplicável na avaliação da ortotropia de corpos de prova em concretos reforçados com baixos teores de fibra de aço, mesmo com a utilização de sistema aberto e em velocidade de carregamento acima da proposta em literatura. A extensão da instabilidade pós-fissuração obtida a partir do ensaio DEWS foi menor que a encontrada para o ensaio de flexão de prismas. O estudo mostrou que a capacidade resistente pós-fissuração do CRF no ensaio de flexão pode ser até 300% maior do que a mesma resistência medida na direção transversal do prisma. / The best way to characterize the post-cracking behaviour of fibre reinforced concretes (FRC) for structural proposes is through direct tensile tests. As direct tensile tests are difficult to conduce, usually indirect tensile tests are employed, especially bending tests with closed-loop control. However, limiting factors, as the strength capacity overestimation of composites under flexural beams tests had motivated the development of another test procedure aiming to obtain responses closer to FRC basic characteristics. This is the case of Double Edge Wedge Splitting test (DEWS). In this test, the indirect tensile stress is not associated with a deflection - as is common in bending tests - but it is related with the cracking opening of concrete matrix. The DEWS test brings the possibility of direct evaluation of the FRC orthotropic behaviour and its effect in the post-crack strength at the serviceability (SLS) and ultimate (ULS) limit estates. Previous researches about DEWS test were done using open-loop control, but they were limited to higher fibre content. These do not provide difficulties about the residual strength characterization at the SLS. Thus, this study carried out an accurate experimental analysis about DEWS. This experimental programme used only fibre reinforced concrete with low steel fibre volume fractions. The first analysis was based in the DEWS test capacity for identification of the effect of predominant fibre orientation into matrix in the post-crack strength of the FRC. This analysis was linked with the flexural test made with prismatic specimens as recommended by JSCE-SF4 in order to evaluate if it promotes an overestimation of the fibre reinforcement capacity. The other evaluation focused on the test loading rate factor by doing DEWS test and bending test (JSCE-SF4:1984) under four different rates in order to verify its influence on the material behaviour. The results shown that DEWS test was capable to identify the fibre alignment into FRC specimens with low fibre content, even using open-loop control and increasing the load rate. The extension of the instability region on DEWS test response was lower than the provided by the flexural tests. The study also showed that the flexural test could overestimate the post-crack strength capacity of the FRC up 300% in relation to the transversal direction.

Page generated in 0.6259 seconds