Spelling suggestions: "subject:"fiber reinforced polymers""
11 |
Structural assessment procedures for existing concrete bridges : Experiences from failure tests of the Kiruna BridgeBagge, Niklas January 2017 (has links)
Assessing existing bridges is an important task in the sustainable management ofinfrastructure. In practice, structural bridge assessments are usually conducted usingtraditional and standardised methods, despite knowledge that these methods oftenprovide conservative estimates. In addition, more advanced methods are available, suchas nonlinear finite element (FE) analysis, that are used for research purposes and cansimulate the structural behaviour of bridges more accurately. Therefore, it would beuseful to develop practical and reliable procedures for refined assessments using theseadvanced techniques.Focusing on the ultimate load-carrying capacity of existing concrete bridges, this thesispresents a procedure for structural assessments. The fundamental idea is to improve theassessment successively, as necessary to predict bridges’ structural behaviour adequately.The procedure involves a multi-level assessment strategy with four levels of structuralanalysis, and an integrated framework for safety verification. At the initial level (Level 1)of the multi-level strategy, traditional standardised methods are used, no failures arecovered implicitly in the structural analysis and action effects are verified using localresistances calculated using analytical models. In the subsequent enhanced levels (Levels2 – 4), nonlinear FE analysis is used for stepwise integration of the verification of flexural,shear-related and anchorage failures into the structural analysis. The framework for safetyverifications includes partial safety factor (PSF), global resistance safety factor (GRSF) andfull probabilistic methods. Within each of these groups, verifications of desired safetymargins can be conducted with varying degrees of complexity.To demonstrate and evaluate the proposed structural assessment procedure, comparativestudies have been carried out, based on full-scale tests of a prestressed concrete bridge.This was the Kiruna Bridge, located in the northernmost city in Sweden, which was duefor demolition as part of a city transformation project, necessitated by large grounddeformations caused by the large nearby mine. Thus, it was available for destructiveexperimental investigation within the doctoral project presented in this thesis. The bridgehad five continuous spans, was 121.5 m long and consisted of three parallel girders with a connecting slab at the top. Both the girders and slab were tested to failure to investigatetheir structural behaviour and load-carrying capacity. Non-destructive and destructivetests were also applied to determine the residual prestress forces in the bridge girders andinvestigate the in situ applicability of methods developed for this purpose. The so-calledsaw-cut method and decompression-load method were used after refinement to enabletheir application to structures of such complexity. The variation of the experimentallydetermined residual prestress forces was remarkably high, depending on the sectioninvestigated. There were also high degrees of uncertainty in estimated values, and thusare only regarded as indications of the residual prestress force.Level 1 analysis of the multi-level assessment strategy consistently underestimatedcapacity, relative to the test results, and did not provide accurate predictions of the shearrelatedfailure observed in the test. With linear FE analysis and local resistance modelsdefined by the European standard, Eurocode 2, the load-carrying capacity wasunderestimated by 32 % for the bridge girder and 55 % for the bridge deck slab. At theenhanced level of structural analysis (Level 3), nonlinear FE analyses predicted thecapacities with less than 2 % deviation from the test results and correctly predicted thefailure mode. However, for existing bridges there are many uncertainties, for instance,the FE simulations were sensitive to the level of residual prestressing, boundaryconditions and assumed material parameters. To accurately take these aspects intoaccount, bridge-specific information is crucial.The complete structural assessment procedure, combining the multi-level strategy andsafety verification framework, was evaluated in a case study. Experiences from theprevious comparative studies were used in an assessment of the Kiruna Bridge followingthe Swedish assessment code. The initial assessment at Level 1 of the multi-level strategyand safety verification, using the PSF method, indicated that the shear capacity of one ofthe girders was critical. The most adverse load case (a combination of permanent loads,prestressing and variable traffic loads) was further investigated through enhancedstructural analyses implicitly accounting for flexural and shear-related failures (Level 3).Nonlinear FE analysis and safety evaluation using the PSF method, several variants of theGRSF method and the full probabilistic analysis for resistance indicated that the permittedaxle load for the critical classification vehicle could be 5.6 – 6.5 times higher than thelimit obtained from the initial assessment at Level 1. However, the study also indicatedthat the model uncertainty was not fully considered in these values. The modeluncertainty was shown to have strong effects on the safety verification and (thus)permissible axle loads. The case study also highlighted the need for a strategy forsuccessively improving structural analysis to improve understanding of bridges’ structuralbehaviour. The refined analysis indicated a complex failure mode, with yielding of thestirrups in the bridge girders and transverse flexural reinforcement in the bridge deck slab,but with a final shear failure of the slab. It would be impossible to capture suchcomplexity in a traditional standardised assessment, which (as mentioned) indicated thatthe shear capacity of the girder limited permissible axle loads. However, nonlinear FEanalyses are computationally demanding, and numerous modelling choices are required.Besides a strategy for rationally improving the analysis and helping analysts to focus oncritical aspects, detailed guidelines for nonlinear FE analysis should be applied to reduce the analyst-dependent variability of results and (thus) the model uncertainty. Clearly, toensure the validity of bridge assessment methods under in situ conditions, theirevaluations should include in situ tests. This thesis presents outcomes of such tests, therebyhighlighting important aspects for future improvements in the assessment of existingbridges.
|
12 |
Modellierung des schädigungsbehafteten inelastischen Materialverhaltens von Faser-Kunststoff-Verbunden / Modelling of inelastic material behaviour and failure of fibre reinforced polymersMüller, Sebastian 16 April 2015 (has links) (PDF)
Die Arbeit beschreibt eine Modellierung des Materialverhaltens von Faser-Kunststoff-Verbunden unter Berücksichtigung der lokalen Materialstruktur, den konstitutiven Eigenschaften der Verbundbestandteile sowie charakteristischer Schädigungsphönomene.
Die Diskretisierung eines repräsentativen Ausschnitts der Materialstruktur erfolgt unter Verwendung der erweiterten Finiten-Elemente-Methode (XFEM). Sie ermöglicht die effiziente Modellierung des Steifigkeitssprunges an den inneren Materialgrenzen und deren Versagen. Der Verlauf der Elementgrenzen muss dabei nicht an die Materialstruktur angepasst werden.
Für die Beschreibung der Dehnratenabhängigkeit der polymeren Matrix wird ein Modell der nichtlinearen fraktionalen Viskoelastizität angewendet. Die Kombination mit einem nichtlokalen Kontinuumsschädigungsmodell ermöglicht weiterhin die Modellierung einer verzerrungsgesteuerten Schädigung des Matrixwerkstoffs.
Die Parametrisierung, Validierung des Gesamtmodells erfolgt anhand ausgewählter experimenteller Untersuchungen an einem unidirektional verstärkten Glasfaser-Polypropylen-Verbund. / The thesis addresses the modelling of the material behavior of fibre reinforced polymers. It systematically includes the influence of the local material structure, the mechanical behaviour of the consituents and characteristic damage phenomena.
The diskretisation of a representative volume element of the material structure is based on the extended finite element method (XFEM). It allows for an efficient modelling of the stiffness jump at internal material boundaries as well as their damage. With the XFEM, the element boundaries are no longer required to coincide with the material structure.
The approximation of the strain rate dependence of the polymeric matrix is based on a nonlinear, fractional viscoelasticity approach. Its combination with a nonlocal strain driven continuum damage modell allows for the modelling of damage effects.
The parametrisation and validation of the overall approach is based on a comparison with experimental results for a unidirectional reinforced glass-fibre-polypropylene composite.
|
13 |
Performance evaluation of RC flexural elements strengthened by advanced compositesAndreou, Eftychia January 2002 (has links)
The flexural performance of composite systems made of reinforced concrete, Fibre Reinforced Polymers (FRPs) and adhesives was studied during the current research. The experimental investigation was principally concentrated on the potential use of Kevlar® 49 (aramid fibre) for RC beam strengthening. The main aims of research have been; (a) to investigate the relative merits of using Aramids in comparison to other FRPs, (b) strength optimisation of systems to prevent excessive losses of ductility, (c) to examine the failure mode and crack patterns, together with salient strength factors at ultimate limit state and (d) to carry out analytical modelling using a commercial FE package. The experimental investigation comprised of testing 55 simply supported RC beams of either 1.5m or 2.6m length. In addition to the parametric studies included in points (a)-(d) above (to assess the section characteristics), further experimentation was conducted to investigate the beam performance by varying the factors of; (e) beam shear span, (f) FRP anchorage length, (g) concrete surface preparation, (h) FRP end-anchoring, (i) beam precracking, (j) introduction of air-voids within the bond line of FRP/concrete, (k) influence of cyclic loading and, (1) exposure to aggressive environment. The results from current tests confirm elements of reports from other researchers (by thorough review of literature) that all FRPs have great potential for flexural strengthening of RC members. This is valid even in cases where additional environmental degradation and/or cracking (due to serviceability loads), had taken place. Aramid fibres were found to result in favourable outcomes concerning both strength and ductility enhancements. It was determined, both from experiments and non-linear modelling, that the amount of FRP fibre content is an important factor in every strengthening application. Experimentation showed that depending on the existing condition of the structure (concrete strength, internal reinforcement ratio, section dimensions, degradation level and load configuration), there seems to be a unique level of optimum fibre content. The FRP levels in excess of the optimum were seen to lead to premature brittle tearing-off failure modes. It was also found that to prevent premature beam failure (due to incompatibility of stress at concrete and FRP interface), a maximum possible anchorage length should be considered in order to deliver an optimum section performance. The results from the analytical modelling indicated a most satisfactory agreement with the experimental data after the initial mechanical properties were calibrated. It was found that actual representation of material properties (e.g. steel constitutive law) are of great significance, for an accurate modelling of RC element loaded behaviour. The bond developed between the FRP and concrete is one of the key parameters for achieving good performance of the systems. It was determined that concrete surface preparation and priming is beneficial, while the introduction of air-voids due to poor workmanship can reduce the section load bearing capabilities. Cyclic loading on FRP strengthened sections was found to curtail the full rotational capacity utilisation of the beam. However, even the above mentioned curtailed behaviour was more advantageous than cyclically loaded beam performance without FRP strengthening.
|
14 |
Modellierung des schädigungsbehafteten inelastischen Materialverhaltens von Faser-Kunststoff-VerbundenMüller, Sebastian 23 January 2015 (has links)
Die Arbeit beschreibt eine Modellierung des Materialverhaltens von Faser-Kunststoff-Verbunden unter Berücksichtigung der lokalen Materialstruktur, den konstitutiven Eigenschaften der Verbundbestandteile sowie charakteristischer Schädigungsphönomene.
Die Diskretisierung eines repräsentativen Ausschnitts der Materialstruktur erfolgt unter Verwendung der erweiterten Finiten-Elemente-Methode (XFEM). Sie ermöglicht die effiziente Modellierung des Steifigkeitssprunges an den inneren Materialgrenzen und deren Versagen. Der Verlauf der Elementgrenzen muss dabei nicht an die Materialstruktur angepasst werden.
Für die Beschreibung der Dehnratenabhängigkeit der polymeren Matrix wird ein Modell der nichtlinearen fraktionalen Viskoelastizität angewendet. Die Kombination mit einem nichtlokalen Kontinuumsschädigungsmodell ermöglicht weiterhin die Modellierung einer verzerrungsgesteuerten Schädigung des Matrixwerkstoffs.
Die Parametrisierung, Validierung des Gesamtmodells erfolgt anhand ausgewählter experimenteller Untersuchungen an einem unidirektional verstärkten Glasfaser-Polypropylen-Verbund. / The thesis addresses the modelling of the material behavior of fibre reinforced polymers. It systematically includes the influence of the local material structure, the mechanical behaviour of the consituents and characteristic damage phenomena.
The diskretisation of a representative volume element of the material structure is based on the extended finite element method (XFEM). It allows for an efficient modelling of the stiffness jump at internal material boundaries as well as their damage. With the XFEM, the element boundaries are no longer required to coincide with the material structure.
The approximation of the strain rate dependence of the polymeric matrix is based on a nonlinear, fractional viscoelasticity approach. Its combination with a nonlocal strain driven continuum damage modell allows for the modelling of damage effects.
The parametrisation and validation of the overall approach is based on a comparison with experimental results for a unidirectional reinforced glass-fibre-polypropylene composite.
|
15 |
Navrhování konstrukcí s FRP výztuží / Design of structures with FRP reinforcementMatušíková, Anna January 2012 (has links)
This diploma thesis presents available FRP software for calculating load bearing capacity of the structures reinforced with FRP and compares them between each other. Furthermore theory and algorithm of my own software is presented here. Load bearing capacity of structures which are reinforced with non-metallic reinforcement and loaded by combination of normal force and bending moment can be solved by my programme. Effects of high temperatures on the concrete structures can be included in the calculation. In the second part of the thesis is calculated load-bearing capacity and deflection of the real beam reinforced with FRP reinforcement and load-bearing capacity of member with FRP reinforcement with effect of elevated temperature. This has been done using my software. Comparison of results from hand calculation and laboratory load-bearing testing is done at the end. This laboratory testing was accomplished by Institute of Concrete and Mansory Structures at our faculty.
|
Page generated in 0.0798 seconds