Spelling suggestions: "subject:"fibrereinforced"" "subject:"fiberreinforced""
21 |
The influence of manufacturing variables on the static and dynamic compressive strength of pre-preg moulded materialsYap, Swee-Cheng January 1991 (has links)
Fibre reinforced plastic (FRP) composites consist of two or more components combined to give a synergistic effect for a better performance in service. One of the phases comprises layers of fibrous material while the other phase comprises of a polymer matrix. In this project, carbon fibre pre-preg material was used. All materials contain imperfections. Materials constituents and manufacturing anomalies are the main causes of faults in FRP composites. The presence of voids in FRP composites is the most common defect. The aim of this project was to determine the influence of voids on the static and dynamic compressive properties of carbon fibre reinforced plastic (CFRP) composites. The influence of voids on fatigue life and failure behaviour were also investigated.
|
22 |
A reconfigurable manufacturing system for thermoplastic fibre-reinforced composite parts : a feasibility assessmentClaassen, Marius 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The South African manufacturing industry plays a pivotal role in the growth of its local economy. Modern manufacturing requirements include the ability to respond quickly to product variability, fluctuations in product demand and new process technologies. The reconfigurable manufacturing paradigm has been proposed to meet the demands of the new manufacturing requirements. In order to assess the feasibility of incorporating automated, reconfigurable manufacturing technologies into the production process of thermoplastic fibre-reinforced composite parts, a system, based on the thermoforming process, that implements these technologies was developed and evaluated. The assessment uses a seat pan for commercial aircraft as case study.
Aspects that were addressed include the architecture, configuration and control of the system. The architecture and configuration addressed the sheet cutting, fixturing, reinforcing, heating, forming, quality assurance and transportation. The control, implemented using agents and based on the ADACOR holonic reference architecture, addresses the cell control requirements of the thermoforming process.
An evaluation of the system’s reconfigurability and throughput is performed using KUKA Sim Pro. The evaluation of the system’s throughput is compared to the predicted throughput of the conventional technique for manufacturing thermoplastic fibre reinforced composite parts in a thermoforming process.
The evaluation of the system’s performance show that the system designed in this thesis for the manufacture of a thermoplastic fibre-reinforced composite seat pan sports a significant advantage in terms of throughput rate, which demonstrates its technical feasibility. The evaluation of the system’s reconfigurability show that, through its ability to handle new hardware and product changes, it exhibits the reconfigurability characteristics of modularity, convertibility, integrability and scalability. / AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse vervaardigingsbedryf speel 'n sentrale rol in die groei van die plaaslike ekonomie. Moderne vervaardiging vereistes sluit in die vermoë om vinnig te reageer op die produk veranderlikheid, skommelinge in die produk aanvraag en nuwe proses tegnologieë. Die herkonfigureerbare vervaardiging paradigma is voorgestel om te voldoen aan die nuwe produksie vereistes. Ten einde die uitvoerbaarheid van die integrasie van outomatiese, herkonfigureerbare vervaardiging-tegnologieë in die produksieproses van veselversterkte saamgestelde onderdele te evalueer, is 'n stelsel, gebaseer op die termo-vormingsproses, wat sulke tegnologieë implementeer, ontwikkel. Die assessering gebruik 'n sitplek pan vir kommersiële vliegtuie as gevallestudie.
Aspekte wat aangespreek is sluit in die argitektuur, konfigurasie en beheer van die vervaardigingstelsel. Die argitektuur en konfigurasie spreek aan die sny, setmate, versterking, verwarming, vorm, gehalteversekering en vervoer van n veselversterkte saamgestelde sitplek pan in 'n termo-vormingsproses. Die beheer, geïmplementeer deur die gebruik van agente en gebaseer op die ADACOR holoniese verwysing argitektuur, spreek die selbeheervereistes van die termo-vormingsproses aan.
'n Evaluering van die stelsel se herkonfigureerbaarheid en deurvoer word gedoen met die behulp van KUKA Sim Pro. Die evaluering van die stelsel se deurvoer word vergelyk met die deurvoer van die konvensionele vervaardigingsproses vir termoplastiese vessel-versterkte saamgestelde onderdele in 'n termo-vormingsproses.
Die evaluering van die stelsel se prestasie toon dat die stelsel wat in hierdie tesis ontwerp is vir die vervaardiging van 'n termoplastiese vessel-versterkte saamgestelde sitplek pan, hou 'n beduidende voordeel, in terme van deurvloeikoers, in wat die stelsel se tegniese haalbaarheid toon. Die evaluering van die stelsel se herkonfigureerbaarheid wys dat, deur middel van sy vermoë om nuwe hardeware en produk veranderinge te hanteer, die stelsel herkonfigureerbare einskappe van modulariteit, inwisselbaarheid, integreerbaarheid en skaalbaarheid vertoon.
|
23 |
Impact damage to composite materialsMatemilola, Saka Adelola January 1993 (has links)
No description available.
|
24 |
Stresses around fasteners in composite aircraft structures and effects on fatigue lifeBenchekchou, Boutaina January 1994 (has links)
No description available.
|
25 |
The mechanical performance of adhesively bonded hydroxyapatite coatingsThompson, Jonathan Ian January 1998 (has links)
No description available.
|
26 |
Some aspects of the energy absorption of composite materialsCarruthers, Joseph John January 1997 (has links)
No description available.
|
27 |
Analysis of a bonded connector for pultruded G.R.P. structural elementsSaribiyik, Mehmet January 2000 (has links)
No description available.
|
28 |
The determination of time-dependent behaviour of DMC in automotive under-bonnet applicationsNg, Anthony Hon-Kuen January 1996 (has links)
No description available.
|
29 |
Characterization of filament wound GRP pipes under lateral quasi-static and low velocity impact loadsZhang, Xiangping January 1998 (has links)
Glass-fibre reinforced plastic pipes are widely used to convey fluids for various purposes. They offer a number of distinct advantages over conventional metals, such as high specific strengths, high specific moduli, superior corrosion resistance and low coefficient of thermal expansion. However, their behaviour under lateral quasi-static and impact loading are still not well known. The research programme described in this thesis was designed to characterise the performance of 55° winding angle GRP pipes, subjected to lateral quasi-static and impact loading. Two approaches: experimental tests and finite element analysis, were used to investigate the behaviour of the GRP pipes. The experimental investigation was started with diametral compression of short GRP pipes to examine the structural behaviour and failure mechanisms. Subsequently, lateral indentation tests were conducted on rigid-foundation supported or simply supported specimens using two different indenter geometries: line-ended and flat-ended. Furthermore, low-velocity impact tests were performed under similar conditions as those for indentation tests in order to characterise the response of the GRP pipes and to identify the correlation between the two forms of loading. The pipes exhibited multi-mode failure mechanisms, resin cracks, delaminations and fibre breakage. It is found that delamination, which resulted in significant loss in stiffness and strength, was the most significant mode of failure for the GRP pipes. A good correlation in behaviour was identified between quasi-static indentation and its energy equivalent low-velocity impact when the global bending stiffness of the GRP specimens were high. Specimens with span S 10.5D i, where Di is the internal diameter of the pipe, are considered to have high bending stiffness, while simply supported specimens with S10.5D i have low bending stiffness. Irrespective of the support conditions and loading type, specimens with high bending stiffness followed a failure mechanism sequence: local resin failure, delamination and the fibre breakage. However, the large global bending experienced by low bending stiffness specimens resulted in a change of failure mechanism, only local damage and surface tensile cracks were observed.
|
30 |
Property-microstructural relationships in GFRPGuild, Felicity Jean January 1978 (has links)
This work consists of an investigation into the microstructure and mechanical behaviour of glass fibre reinforced polyester resin beams. The volume fraction occupied by glass fibres was 20-30%, which is that typically used in boat building. The beams tested were all unidirectional, with fibres oriented parallel or perpendicular to the long axis of the beam. Various techniques have been developed which may be applicable to other composite materials. The microstructure of the beams was investigated by observation of cross-sections using a Quantimet 720 Image Analysing Computer. Volume fractions and the distribution. of fibre cross-sectional areas were measured. Methods have been developed for the quantitative definition of the microstructure, in terms of the fibre arrangement. Cracks were grown in four-point flexural loading while monitoring acoustic emission. The acoustic emission circuit was built in the laboratory, and designed to monitor fibre failures only, one count being associated with one fibre failure. The processes of crack growth were further investigated by observation of fracture surfaces using a scanning electron microscope and measurement of crack profiles. The factors controlling the processes of crack growth have been elucidated. The material condition was monitored by specific damping capacity measurements. A free-free rig with excitation at the ends of the beam was developed. In addition measurements were made using a cantilever rig. Simple analyses involving the solution of the classical wave equation were carried out; a receptance analysis was also developed which allows the undamaged and cracked portions of the beam to be separated in the analysis. Invisible cracks, which had been indicated by acoustic emission, were successfully detected in both rigs. The correlation between recorded acoustic emissions and specific damping capacity measurements supports the validity of both techniques. Some correlation between properties and measured microstructures has been obtained here. These quantitative methods for the measurement of the microstructure of composite materials should prove very useful in a wide range of applications.
|
Page generated in 0.0361 seconds