• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 20
  • 19
  • 15
  • 14
  • 10
  • 9
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 268
  • 124
  • 66
  • 44
  • 43
  • 38
  • 37
  • 32
  • 32
  • 31
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Fibre Reinforcement for Shrinkage Crack Control in Prestressed, Precast Segmental Bridges

Susetyo, Jimmy 23 February 2010 (has links)
In prestressed precast segmental concrete bridges, conventional longitudinal reinforcement serves only as shrinkage crack controllers. The presence of this reinforcement, however, has restricted the ability to reduce the cross-section of the segments when high strength concrete is used because of the minimum dimensions required to accomodate the reinforcement. Research on fibre reinforced concrete (FRC) indicated that the addition of steel fibres to concrete significantly improved the tensile behaviour and the crack control characteristics of the concrete. This research investigates the feasibility of fibres to replace the conventional shrinkage reinforcement, allowing for the design of thinner and lighter structures with comparable or better crack control characteristics. Extensive work was conducted to investigate the effectiveness of hooked-end steel fibres to control cracks. Seven types of material tests were performed: uniaxial tension test, cylinder compression test, modulus of rupture test, splitting test, free and autogenous shrinkage test, and restrained shrinkage test. In addition, ten 890×890×70 mm concrete panels were tested under in-plane pure-shear loading using the Panel Element Tester. The parameters of study were the fibre volume content (0.5%, 1.0%, and 1.5%), the concrete compressive strength (50 and 80 MPa), and the fibre geometry and tensile strength. In addition to the experimental study, a model was developed to investigate the behaviour of a 1D restrained FRC member subjected to shrinkage. The experimental results indicated that the addition of fibres significantly improved the behaviour of the concrete, particularly the crack control characteristics, the post-peak compressive response, the post-cracking tensile response, the toughness, and the ductility of the concrete. The results also indicated that steel fibres were as effective as conventional reinforcement in controlling shrinkage cracking, provided that sufficient fibre volume content was added to the concrete. For example, in order to achieve a maximum crack width of 0.35 mm, a minimum fibre content of 0.9% and 1.1% should be provided for 50 MPa FRC containing high aspect ratio fibres and low aspect ratio fibres, respectively. In addition, the results indicated the importance of fibre content and fibre aspect ratio on the effectiveness of fibre reinforcement.
52

Behaviour of Normal and High Strength Concrete Confined with Fibre Reinforced Polymers (FRP)

Cui, Ciyan 23 September 2009 (has links)
An extensive amount of research has been reported in previous literature on the behaviour of FRP-confined concrete subjected to concentric axial compression. However, data on the behaviour of high strength concrete confined with various types and configurations of FRP systems is still lacking and no consensus exists on the complete response of FRP-confined concrete. In addition, no appropriate design guidelines are currently available. This thesis reports results from an experimental program involving 112 cylindrical concrete specimens, 88 of which were FRP-wrapped and the remaining 24 were control specimens. All the specimens were 152 mm in diameter and 305 mm in length. Test variables included: amount of FRP materials used, strength and stiffness of FRP materials, concrete strength, and the health of concrete at the time of strengthening. Experimental results indicated that a pre-repair load of up to 77% of the unconfined concrete strength had no appreciable effect on the stress-strain response of FRP-confined concrete. With an increase of the unconfined concrete strength, the strength enhancement, energy absorption capacity, ductility factor and work (energy) index at rupture of FRP jackets all decreased remarkably. A positive correlation was found between confined concrete ductility and FRP rupture strain. In addition, a gradual post-peak failure of the specimens, observed previously from FRP-confined concrete columns tested at the University of Toronto, was also observed in some of the current tests -- owing to the high speed data acquisition system. That ductile failure can be attributed to the gradual unzipping failure of FRP jacket, which in turn is related to specimen size. A new constitutive model was developed based on material properties, force equilibrium and strain compatibility. The size effect was taken into account in the model, which is able to accommodate concrete with a wide range of strength (25 MPa to 110 MPa) confined with various types and configurations FRP systems. Design equations from CSA S806-02 and CSA S6-06 provide reasonable and conservative estimates for the FRP-confined concrete strength. To calculate the peak strain for FRP-confined concrete, an equation based on the work by Berthet et al. (2006) is proposed.
53

Fibre Reinforcement for Shrinkage Crack Control in Prestressed, Precast Segmental Bridges

Susetyo, Jimmy 23 February 2010 (has links)
In prestressed precast segmental concrete bridges, conventional longitudinal reinforcement serves only as shrinkage crack controllers. The presence of this reinforcement, however, has restricted the ability to reduce the cross-section of the segments when high strength concrete is used because of the minimum dimensions required to accomodate the reinforcement. Research on fibre reinforced concrete (FRC) indicated that the addition of steel fibres to concrete significantly improved the tensile behaviour and the crack control characteristics of the concrete. This research investigates the feasibility of fibres to replace the conventional shrinkage reinforcement, allowing for the design of thinner and lighter structures with comparable or better crack control characteristics. Extensive work was conducted to investigate the effectiveness of hooked-end steel fibres to control cracks. Seven types of material tests were performed: uniaxial tension test, cylinder compression test, modulus of rupture test, splitting test, free and autogenous shrinkage test, and restrained shrinkage test. In addition, ten 890×890×70 mm concrete panels were tested under in-plane pure-shear loading using the Panel Element Tester. The parameters of study were the fibre volume content (0.5%, 1.0%, and 1.5%), the concrete compressive strength (50 and 80 MPa), and the fibre geometry and tensile strength. In addition to the experimental study, a model was developed to investigate the behaviour of a 1D restrained FRC member subjected to shrinkage. The experimental results indicated that the addition of fibres significantly improved the behaviour of the concrete, particularly the crack control characteristics, the post-peak compressive response, the post-cracking tensile response, the toughness, and the ductility of the concrete. The results also indicated that steel fibres were as effective as conventional reinforcement in controlling shrinkage cracking, provided that sufficient fibre volume content was added to the concrete. For example, in order to achieve a maximum crack width of 0.35 mm, a minimum fibre content of 0.9% and 1.1% should be provided for 50 MPa FRC containing high aspect ratio fibres and low aspect ratio fibres, respectively. In addition, the results indicated the importance of fibre content and fibre aspect ratio on the effectiveness of fibre reinforcement.
54

FLEXURAL BEHAVIOUR OF SANDWICH PANELS COMPOSED OF POLYURETHANE CORE AND GFRP SKINS AND RIBS

SHARAF, TAREK 21 September 2010 (has links)
This study addresses the flexural performance of sandwich panels composed of a polyurethane foam core and glass fibre-reinforced polymer (GFRP) skins. Panels with and without GFRP ribs connecting the skins have been studied. While the motivation of the study was to develop new insulated cladding panels for buildings, most of the work and findings are also applicable to other potential applications such as flooring, roofing and light-weight decking. The study comprises experimental, numerical, and analytical investigations. The experimental program included three phases. Phase I is a comprehensive material testing program of the polyurethane core and GFRP skins and ribs. In Phase II, six medium size (2500x660x78 mm) panels with different rib configurations were tested in one-way bending. It was shown that flexural strength and stiffness have increased by 50 to 150%, depending on the rib configuration, compared to a panel without ribs. In Phase III, two large-scale (9150x2440x78 mm) panels, representing a cladding system envisioned to be used in the field, were tested under a realistic air pressure and discrete loads, respectively. The deflection under service wind load did not exceed span/360, while the ultimate pressure was about 2.6 times the maximum factored wind pressure in Canada. A numerical study using finite element analysis (FEA) was carried out. The FEA model accounted for the significant material nonlinearities, especially for the polyurethane soft core, and the geometric nonlinearity, which is mainly a reduction in thickness due to core softness. Another independent analytical model was developed based on equilibrium and strain compatibility, accounting for the core excessive shear deformation. The model also captures the localized deformations of the loaded skin, using the principals of beam-on-elastic foundation. Both models were successfully validated using experimental results. Possible failure modes, namely core shear failure, and compression skin crushing or wrinkling were successfully predicted. A parametric study was carried out to explore further the core density, skin thickness, and rib spacing effects. As the core density increased, flexural strength and stiffness increased and shear deformations reduced. Also, increasing skin thickness became more effective as the core density increased. The optimal density was 95-130 kg/m3. Reducing the spacing of ribs enhanced the strength up to a certain level; It then stabilized at a spacing of 2.9 times the panel thickness. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2010-09-21 16:29:00.315
55

Static and dynamic response of sandstone masonry units bound with fibre reinforced mortars

Islam, Md Toihidul Unknown Date
No description available.
56

Fibre reinforced polymer (FRP) strengthened masonry arch structures

Tao, Yi January 2013 (has links)
Masonry arch bridges have played a significant role in the road and rail transportation network in the world for centuries. They are exposed to damage due to overloading and deterioration caused by environmental actions. In order to reestablish their performance and to prevent their collapse in various hazardous conditions, many of them require strengthening. Fibre reinforced polymer (FRP) systems are increasingly used for repair and strengthening of structures, with particularly widespread application to concrete structures. However, the application of FRP composites to masonry structures is less well established due to the complexity of masonry caused by the material discontinuity. FRP strengthening masonry arch bridges has been even less studied due to the additional complexity arising from the co-existence of the normal interfacial stress and the shear interfacial stress at the curved FRP-to-masonry bondline. This thesis presents an extensive study investigating the behaviour of FRP strengthened masonry bridges. The study started with a laboratory test of a two span masonry arch bridge with sand backfill. A single ring arch bridge was first tested to near failure, and then repaired by bonding FRP into their intrados and tested to failure. It was found that the FRP strengthening not only improved the loading capacity and stiffness of bridge, but also significantly restrained the opening of cracks in the masonry. Shear and peeling debonding of FRP was observed. There have been two common strategies in finite element (FE) modelling of FRP strengthened structures in meso-scale: direct model and interface model. The former is necessary when investigating the detailed bond behaviour but challenges remain due to the difficulties in concrete modelling. A new concrete damage model based on the plastic degradation theory has been developed in this study to study the bond behaviour of FRP strengthened concrete structure. This robust model can successfully capture this bond behaviour and simulate the entire debonding process. A numerical study of masonry arch bridges including the backfill was conducted to study the behaviour of masonry arch bridge. A total of four modelling strategies were examined and compared. Although they all can successfully predict the behaviour of arch, a detailed solid model newly developed in this study is more suitable for modelling both plain masonry and FRP strengthened structures. Finally, a numerical study of bond behaviour and structural response of FRP strengthened masonry arch structures with sand backfill was conducted. In addition to the masonry and backfill, the mixed mode interfacial behaviour was modelled by the aforementioned interface model strategy and investigated in detail to achieve a deeper understanding of the behaviour of FRP strengthened masonry arch structures. The results are in close agreement with test results, and highlight the influence of the key parameters in the structural response to failure and revealed the mechanisms on how the load is transmitted through this complex multi-component structural system.
57

Test of concrete flanged beams reinforced with CFRP bars

Ashour, Ashraf F., Family, M. January 2006 (has links)
Tests results of three flanged and two rectangular cross-section concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars are reported. In addition, a companion concrete flanged beam reinforced with steel bars is tested for comparison purposes. The amount of CFRP reinforcement used and flange thickness were the main parameters investigated in the test specimens. One CFRP reinforced concrete rectangular beam exhibited concrete crushing failure mode, whereas the other four CFRP reinforced concrete beams failed owing to tensile rupture of CFRP bars. The ACI 440 design guide for FRP reinforced concrete members underestimated the moment capacity of beams failed owing to CFRP tensile rupture and reasonably predicted deflections of the beams tested. A simplified theoretical analysis for estimating the moment capacity of concrete flanged beams reinforced with FRP bars was developed. The experimental moment capacity of the CFRP reinforced concrete beams tested compared favourably with that predicted by the theoretical analysis developed.
58

Static and dynamic response of sandstone masonry units bound with fibre reinforced mortars

Islam, Md Toihidul 11 1900 (has links)
This research project describes the impact resistance of masonry units bound with fibre-reinforced Type S mortars and hydraulic lime mortar. The dynamic impact factor and stress rate sensitivity were evaluated for the flexural strength of the mortar and the bond strength, and further, the pattern of failure was noted for each mix and loading rate. Results show that the impact resistance of the masonry units increased in the presence of fibres. However, the stress rate sensitivity of the bond strength decreased with an increase in fibre content. Also, whereas the mode of failure in those masonry units bound with plain Type S mortars was through fracture at the mortar-block interface, the addition of fibres transferred the failure plane to within the masonry block. For hydraulic lime mortar, fibre reinforcement retained the sacrificial nature of mortar and also increased the flexural toughness factor of the joint even under dynamic loading. / Structural Engineering
59

Modelling the behaviour of steel fibre reinforced concrete pavements

Elsaigh, Walied Ali Musa Hussien. January 2007 (has links)
Thesis (PhD(Transportation Engineering)(Civil Engineering)) --University of Pretoria, 2007. / Includes bibliographical references.
60

Impact behaviour of reinforced concrete beams strengthened or repaired with carbon fibre reinforced polymer (CFRP)

Al-Farttoosi, Mahdi January 2016 (has links)
War, terrorist attacks, explosions, progressive collapse and other unforeseen circumstances have damaged many structures, including buildings and bridges in war- torn countries such as Iraq. Most of the damaged structural members, for example, beams, columns and slabs, have not totally collapsed and can be repaired. Nowadays, carbon fibre reinforced polymer (CFRP) is widely used in strengthening and retrofitting structural members. CFRP can restore the load- carrying capacity of damaged structural members to make them serviceable. The effect of using CFRP to repair the damaged beams has not been not properly addressed in the literature. This research has the aim of providing a better understanding of the behaviour of reinforced concrete beams strengthened or repaired with CFRP strip under impact loading. Experimental and analytical work were conducted in this research to investigate the performance of RC beams strengthened or repaired using CFRP. To study the impact behaviour of the CFRP reinforced concrete beams, a new heavy drop weight impact test machine has been designed and manufactured to conduct the experimental work. Twelve RC beams were tested experimentally under impact load. The experimental work was divided into two stages; stage 1 (strengthened) and stage 2 (repair). At stage 1, three pairs of beams were tested under impact loading. External bonded reinforcement (EBR) and near surface mounted (NSM) techniques were used to strengthen the RC beams to find the most effective technique. Three pairs of beams were tested in stage 2 (repair). Different degrees of damages were induced using different impact energies. NSM technique was used to repair the damaged beams using CFRP strip. Stiffness degradation method was used to assess the degree of damage in beams due to impact. The study investigated the stiffness, bending load, impact energy, deflection and mode of failure of CFRP strengthened or repaired beams under impact loading. The distribution of the stresses, strains, accelerations, inertia forces, and cracks in the beam under impact loading was also investigated in this study. Empirical equations were proposed in this research to predict the bending load and maximum deflection of the damaged and repaired beams under impact loading. For validation purposes, finite element analysis was used with the LUSAS package. The FEA results were compared with the experimental load-deflection curves and ultimate failure load results. In this research, to simulate a real situation, different models were used to simulate the bonding between the CFRP and concrete and also between steel bars and concrete. In these FEA models, the bonding between the concrete and the CFRP was modelled using the Drucker-Prager model. To simulate the bonding between steel and concrete, a joint element was used with spring constants to model the bond between steel bars and surrounding concrete. The analytical results were compared with the experimental results. In most previous research, FEA has been used to simulate the RC beams under impact loading without any damage. In this thesis, a new 3D FEA model was proposed to simulate and analyse the damaged RC beams under impact loading with different degrees of damage. The effect of the damage on concrete stiffness and the bonding between the steel bars and the concrete were investigated in FEA model. The damage was modelled by reducing the mechanical properties of the concrete and the bonding between steel bars and concrete. This thesis has contributed to improving knowledge of the behaviour of damaged beams repaired with CFRP, and the experimental work conducted, together with the numerical analysis, have provided essential data in the process of preparing a universal standard of CFRP design and construction. In the FEA model, the damage to the beams due to impact loading was successfully modelled by reducing the beam stiffness.

Page generated in 0.03 seconds