• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 29
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Two Types of Fibrils in ATTR Amyloidosis : Implications for Clinical Phenotype and Treatment Outcome

Ihse, Elisabet January 2011 (has links)
Systemic amyloidoses are a group of lethal diseases where proteins aggregate into fibrillar structures, called amyloid fibrils, that deposits throughout the body. Transthyretin (TTR) causes one type of amyloidosis, in which the aggregates mainly infiltrate nervous and cardiac tissue. Almost a hundred different mutations in the TTR gene are known to trigger the disease, but wild-type (wt) TTR is also incorporated into the fibrils, and may alone form amyloid. Patients with the TTRV30M mutation show, for unknown reasons, two clinical phenotypes. Some have an early onset of disease without cardiomyopathy while others have a late onset and cardiomyopathy. It has previously been described that amyloid fibrils formed from TTRV30M can have two different compositions; either with truncated molecules beside full-length TTR (type A) or only-full-length molecules (type B).  In this thesis, the clinical importance of the two types of amyloid fibrils was investigated. We found that the fibril composition types are correlated to the two clinical phenotypes seen among TTRV30M patients, with type A fibrils present in late onset patients and type B fibrils in early onset patients. The only treatment for hereditary TTR amyloidosis has been liver transplantation, whereby the liver producing the mutant TTR is replaced by an organ only producing wt protein. However, in some patients, cardiac symptoms progress post-transplantationally. We demonstrated that the propensity to incorporate wtTTR differs between fibril types and tissue types in TTRV30M patients, with cardiac amyloid of type A having the highest tendency. This offers an explanation to why particularly cardiac amyloidosis develops after transplantation, and suggests which patients that are at risk for such development. By examining patients with other mutations than TTRV30M, we showed that, in contrast to the general belief, a fibril composition with truncated TTR is very common and might even be the general rule. This may explain why TTRV30M patients often have a better outcome after liver transplantation than patients with other mutations. In conclusion, this thesis has contributed with one piece to the puzzle of understanding the differences in clinical phenotype and treatment response between TTR amyloidosis patients, by demonstrating corresponding differences at a molecular level.
22

Structural changes during cellulose composite processing

Halonen, Helena January 2012 (has links)
Two approaches for creating a new all-cellulose composite material have been studied: the biosynthesis of compartmentalised bacterial cellulose fibril aggregates and the compression moulding of commercial chemical wood pulps processed with only water. The objective was to study the structural changes during processing and the complexity of relating the mechanical properties of the final biocomposites to the nanoscale structure was highlighted. Solid-state CP/MAS 13C NMR spectroscopy was utilised to determine both the fibril aggregate width and the content of the different crystalline cellulose forms, cellulose I and cellulose II. Using this method, the quantities of hemicellulose present inside the fibre wall and localised at the fibre surfaces could be determined. The formation of cellulose fibrils was affected by the addition of hydroxyethylcellulose (HEC) to a culture medium of Acetobacter aceti, and the fibrils were coated with a thin layer of HEC, which resulted in loose bundles of fibril aggregates. The HEC coating, improved the fibril dispersion in the films and prevented fractures, resulting in a biocomposite with remarkable mechanical properties including improved strength (289 MPa), modulus (12.5 GPa) and toughness (6%). The effect of press temperature was studied during compression moulding of sulphite dissolving-grade pulps at 45 MPa. A higher press temperature yielded increases in the fibril aggregation, water resistance (measured as the water retention value) and Young’s modulus (12 GPa) in the final biocomposite. The high pressure was important for fibril aggregation, possibly including cellulose-cellulose fusion bonds, i.e., fibril aggregation in the fibre-fibre bond region. The optimal press temperature was found to be 170°C because cellulose undergoes thermal degradation at higher temperatures. The effect of hemicellulose was studied by comparing a softwood kraft paper-grade pulp with a softwood sulphite paper and a softwood sulphite dissolving-grade pulp. A significant fibril aggregation of the sulphite pulps suggested that the content and distribution of hemicellulose affected the fibril aggregation. In addition, the hemicellulose structure could influence the ability of the hemicellulose to co-aggregate with cellulose fibrils. Both sulphite pulp biocomposites exhibited Young’s moduli of approximately 12 GPa, whereas that of the kraft pulp was approximately half that value at 6 GPa. This result can be explained by a higher sensitivity to beating in the sulphite pulps. The effect of mercerisation, which introduces disordered cellulose, on the softwood sulphite dissolving-grade pulp was also studied under compression moulding at 170°C and 45 MPa. The mechanisms causing an incomplete transformation of cellulose I to II in a 12 wt% NaOH solution were discussed. The lower modulus of cellulose II and/or the higher quantity of disordered cellulose likely account for the decrease in Young’s modulus in the mercerised biocomposites (6.0 versus 3.9 GPa). / Två metoder för att skapa ett nytt kompositmaterial baserat på enbart cellulosa har studerats, biosyntes av fibrillaggregat bestående av bakteriecellulosa och varmpressning av kommersiella träfiberbaserade massor med vatten som den enda processkemikalien. Målet var att studera de strukturella förändringarna som sker under tillverkningsprocessen. Även komplexiteten i att relatera strukturen på nanonivå till de mekaniska egenskaperna hos de slutliga biokompositerna belystes. Med fastfas CP/MAS 13C NMR-spektroskopi var det möjligt att bestämma både fibrillaggregattjockleken och mängden av cellulosakristallformerna; cellulosa I och cellulosa II. Det var också möjligt att bestämma mängden hemicellulosa dels närvarande inuti fiberväggen och dels mängden lokaliserad på fiberytor. Tillsats av hydroxyetylcellulosa (HEC) i odlingsmediet för Acetobacter aceti påverkade bildandet av cellulosafibriller som blev belagda med ett tunt skikt av HEC, vilket också resulterade i löst bundna fibrillaggregat. HEC-beläggningen förbättrade fibrilldispersionen i filmerna och minskade sprickbildningen, vilket gav en biokomposit med mycket goda mekaniska egenskaper med kombinerad hög styrka (289 MPa), styvhet (12.5 GPa) och seghet (6%). Effekten av presstemperatur vid varmpressning (45 MPa tryck) studerades på sulfit dissolvingmassor. Högre presstemperatur gav ökad fibrillaggregering, ökat vattenmotstånd (mätt som vattenretentionsvärde) och högre styvhet (12 GPa) för biokompositen. Det höga trycket var också viktigt för fibrillaggregeringen, som troligen omfattar cellulosa-cellulosa samkristallisation dvs. fibrillaggregering i fiber-fiber-bindningsregionen. Den optimala presstemperaturen föreslogs vara 170° C pga. termisk nedbrytning av cellulosa vid högre temperaturer. Effekten av hemicellulosa studerades genom att jämföra sulfat pappersmassa med sulfit pappersmassa och sulfit dissolvingmassa. Mängden och fördelningen av hemicellulosa föreslogs ligga till grund för skillnaden i fibrillaggregering, som var mera uttalad i sulfitmassorna. Även hemicellulosans struktur kan påverka förmågan hos hemicellulosa att sam-aggregera med cellulosafibriller. Biokompositerna baserade på sulfitmassorna hade en styvhet på ca. 12 GPa, medan sulfatmassan bara hade hälften av den nivån ca. 6 GPa, vilket förklarades av sulfitmassornas högre känslighet för malning. Även effekten av mercerisering av sulfit dissolvingmassa varmpressad vid 170° C och 45 MPa studerades. Mercerisering introducerar oordnad cellulosa och mekanismerna som endast ger en partiell omvandling av cellulosa I till II i en 12 vikt% NaOH-lösning diskuterades. Den sämre styvheten hos den merceriserade biokompositen (6.0 resp. 3.9 GPa) förklaras troligen genom cellulosa II kristallens lägre styvhet och/eller den högre mängden av oordnad cellulosa. / <p>QC 20121106</p> / Wallenberg Wood Science Center / Biomime
23

Systematic study of amyloid beta peptide conformations: Implications for alzheimer's disease

Jimenez, Jeffy Pilar 01 June 2005 (has links)
The amyloid beta peptide particularly the 40 and 42 amino acid residues are the responsible for plaque formation in Alzheimer's disease (AD) patients. Extra cellular plaque formation has been recognized after incessant investigations along with the formation of intracellular tau protein tangles as the hallmarks of AD. Furthermore, the plaque formation has been linked mostly as a cause of the disease and the tangles mostly as a consequence. Our investigation is focused on studying the formation of AD plaques. The amyloid beta (A[beta]) is a physiological peptide secreted from neurons under normal conditions, along with other soluble forms cleaved from the amyloid precursor protein (APP). These soluble forms of APP have neuroprotective and neurotrophic functions, while the A[beta] is considered an unwanted by-product of the APP processing. Under normal conditions there is an anabolic/catabolic equilibrium of the A[beta] peptide; therefore, it is believed that the formation of the plaque does not take place. On the other hand, the neurons' surface may play an important role in the adhesion mechanisms of the A[beta] peptide. Our experiments show that the neuron surfaces along with the media conditions may be the most important causes for progressive formation of plaques. We have incubated rigid supports (mica) and soft biomimetic substrates (lipid bilayers on top of a PEG cushion layer drafted onto a silica surface) with the three different conformations of the A[beta] peptide (monomeric, oligomeric and fibrils structures) to determine the adhesion mechanisms associated with in situ plaque formation. The soft biomimetic substrates have been assembled first by depositing and activating a thin film of silica (i.e., to create surface silanol groups). This film is then reacted with polyethylene glycol (PEG), which is a biocompatible polymer, to create a cushion-like layer that supports and allows the lipid bilayer to have high mobility. A lipid bilayer is then deposited on this soft support to reproduce a cell membrane using the Langmuir Blodgett deposition technique. The characterization of such biomimetic membranes has been studied by using Atomic Force Microscopy (AFM) in liquid environments. Our results show that these lipid bilayers are highly mobile. Additionally the structure and topography characteristics of the A[beta] conformations have been followed with atomic force microscopy (AFM). The kinetics and rates of adhesion have been measured with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Our results show the progress of the plaques' formation with time where simple monomers deposit on the substrates and allow the development of oligomeric species.
24

Cardiac function in hereditary transthyretin amyloidosis : an echocardiographic study / Hjärtfunktion vid ärftlig transtyretin-amyloidos : en ekokardiografisk studie

Arvidsson, Sandra January 2016 (has links)
Background: Hereditary transthyretin amyloidosis (ATTR) is a lethal disease in which misfolded transthyretin (TTR) proteins accumulate as insoluble aggregates in tissues throughout the body. A common mutation is the exchange of valine to methionine at place 30 (TTR V30M), a form endemically found in the northern parts of Sweden. The main treatment option for ATTR amyloidosis is liver transplantation as the procedure halts production of mutated transthyretin. The disease is associated with marked phenotypic diversity ranging from predominant cardiac complications to pure neuropathy. Two different types of fibril composition – one in which both fragmented and full-length TTR are present (type A) and one consisting of only full-length TTR (type B) have been suggested to account for some phenotypic differences. Cardiac amyloidosis is associated with increased myocardial thickness and the disease could easily be mistaken for other entities characterised by myocardial thickening, such as sarcomeric hypertrophic cardiomyopathy (HCM). The aims in this thesis were to investigate echocardiographic characteristics in Swedish ATTR amyloidosis patients, and to identify markers aiding in differentiating ATTR heart disease from HCM. Another objective was to examine the impact of fibril composition and sex on the phenotypic variation in amyloid heart disease. Methods: A total of 122 ATTR amyloidosis patients that had undergone thorough echocardiographic examinations were included in the studies. Analyses of ventricular geometry as well as assessment of systolic and diastolic function were performed, using both conventional echocardiographic methods and speckle tracking technique. ECG analysis was conducted in study I, allowing measurement of QRS voltage. In study I and study II ATTR patients were compared to patients with HCM. In addition, 30 healthy controls were added to study II. Results: When parameters from ECG and echocardiography were investigated, the results revealed that the combination of QRS voltage &lt;30 mm (&lt;3 mV) and an interventricular/posterior wall thickness quotient &lt;1.6 could differentiate cardiac ATTR amyloidosis from HCM. Differences in degree of right ventricular involvement were also demonstrated between HCM and ATTR amyloidosis, where ATTR patients displayed a right ventricular apical sparing pattern whereas the inverse pattern was found in HCM. Analysis of fibril composition revealed increased LV wall thickness in type A patients compared to type B, but in addition type A women displayed both lower myocardial thickness and more preserved systolic function as compared to type A males. When cardiac geometry and function were evaluated pre and post liver transplantation in type A and B patients, significant deterioration was detected in type A but not in type B patients after liver transplantation. Conclusions: Increasing awareness of typical cardiac amyloidotic signs by echocardiography is important to reduce the risk of delayed diagnosis. Our classification model based on ECG and echocardiography could aid in differentiating ATTR amyloidosis from HCM. Furthermore, the apical sparing pattern found in the right ventricle may pose another clue for amyloid heart disease, although it requires to be studied further. Furthermore, we disclosed that type A fibrils, male sex and increasing age were important determinants of increased myocardial thickness. As type A fibril patients displayed rapid cardiac deterioration after liver transplantation other treatment options should probably be sought for this group of patients.
25

Evaluating the Congo red staining method with the aim to solve problematics in the work process and optimize amyloidosis diagnostics

Östlund, Helena January 2017 (has links)
Some diagnostic methods have been used for a very long time. Congo red stain saw the light of day in 1883, and quickly became important in many fields of use. Nowadays we recognize the importance of Congo red in diagnose of amyloid diseases. However, the technique and experience needed throughout the process from a suspected case to the diagnose is of greate importance. When diagnostic difficulties appeared in a few patient cases at the local hospital in Gävle, Sweden, a solution was needed. A delayed diagnose could have a potential devastating outcome seen in the perspective of the patient. Therefore it is crucial to have both sensitive and specific diagnostic methods that are optimized against the sought pathogenesis. This study aspired to find the solution to the difficulties in diagnostic work, brought to light by a pathology doctor at the hospital. Several different methodical procedures are used throughout the process, and were evaluated with focus lying on the thickness of the tissue, the staining method and the microscopes used in diagnostics. Different thickness of the tissue was cut and stained. The results demonstrated the importance of proper techniques and methods in preparing the tissue, and the tools to analyse it with. The thickness of tissue and the lightsource in the microscope played a cruicial role in diagnostics. Additionally it showed the importance to continue to raise the quality of work and make progress in the diagnostic and scientific field, possibly by finding new applications for old methods.
26

Manipulating the structural and mechanical properties of ionic-complementary peptide hydrogels

Gibbons, Jonathan January 2015 (has links)
Hydrogels based on self-assembling peptides are believed to have potential for use in a wide range of biomedical and biodiagnostic applications. For many of these, control over various properties of the gels is essential for tuning the gels to fit certain constraints or requirements in terms physical properties such as diffusive properties and swelling. One important property to control for applications such as cell culture and drug delivery is its mechanical strength, and this study investigates three different strategies by which the individual peptide monomers can be modified in order to effect a change in the macromolecular self-assembled structure and therefore a bulk change in the mechanical stiffness. In chapter 4, two ionic-complementary octapeptides, FEFKFKFK and FEFQFKFK are described, with monomer charges of +2 and +1, respectively at physiological pH. FEFKFKFK was observed to form largely discrete fibrils, characteristic of similar systems, while FEFQFKFK formed fibril bundles – believed to be a limited form of an aggregation effect frequently seen in similar peptides with neutral charge. As a result of this structural change, FEFQFKFK was found to have values for the elastic and viscous moduli (which are often used to measure the ‘strength’ of a gel) between 5 and 10 times larger than those of FEFKFKFK at the same concentration. The same behaviour was seen in FEFKFKFK when the monomer charges were reversed by adjusting pH, suggesting that the monomer charge is indeed responsible for the bundling effect. In chapter 5, two branched peptides were designed and synthesized: KG17, with two arms consisting of self-assembling FKFEFKFK-motifs, and KG28 which had three such arms. Each branched peptide was doped into pure FKFEFKFK and the resulting gels investigated. While no obvious structural changes were observed for either dopant (save for a potential fibril parallelisation effect with KG17 observed in Small-Angle Neutron Scattering (SANS)), both were observed to increase the elastic and viscous moduli of the gels at overall peptide concentrations of 30 and 50 mg mL-1 (gels), but not at 10 mg mL-1 (viscous liquid). The most dramatic change was observed in the 50 mg mL-1 gels, suggesting that higher concentrations could enhance the effect of the dopants. In chapter 6, three thermo-responsive polymers (pTEGMA), of Degrees of polymerisation (DPs) 17, 47 and 142 were conjugated to CGFKFEFKFK and incorporated into a peptide hydrogel. Gels containing the non-conjugated versions of each polymer were also tested. While no changes in morphology were observed at the fibillar level, the polymer Lower Critical Solution Temperature (LCST) behaviour could be observed in SANS in all samples apart from the DP17 conjugate. However, in rheological tests gels doped with this conjugate appeared to show the strongest the elastic and viscous moduli. In general the conjugates appeared to increase the elastic and viscous moduli, particularly at temperatures above ca. 50°C. Rather than this being LCST behaviour, it was suggested that the polymers can act to enhance a natural thermo-response that was observed in the peptide, with the shortest polymer (DP17) experiencing the least steric hindrance and therefore having the strongest effect. It was postulated that this interaction could involve the screening of charge on the peptide fibril. Non-conjugated polymer appeared to have little effect on the mechanical properties, with elastic modulus values correlating strongly to the overall peptide concentration.
27

An Investigation of Mechanics of Collagen and Fibril in Bone and Interactions in Swelling Clays: A Molecular and Multiscale Modeling Study

Pradhan, Shashindra Man January 2012 (has links)
A fundamental study of the mechanics at the molecular scale and bridging it to the continuum level through multiscale modeling is the focus of this work. This work investigates how the material properties of nanoscale systems are influenced by the nonbonded interactions and molecular conformations. The molecular model is then bridged with the finite element model to link mechanics at nanoscale with the continuum scale. This work provides an unprecedented insight into how the interactions at the molecular scale influence mechanical properties at higher scales. Two materials are considered for the molecular modeling study: bone and Na-montmorillonite swelling clay. Bone is composed of composed of collagen molecules and hydroxyapatite in the molecular scale, which are organized into collagen fibril. The molecular dynamics study is carried out to study the nature of collagen-hydroxyapatite interface and the mechanics of collagen in bone. Furthermore, the molecular model of full-length collagen is built for the first time to show the differences in its conformation and deformation mechanism during pulling as compared to the short molecules, upon which the current understanding of is based. The mechanics of collagen is explained with the help of three-tier helical hierarchy not seen in short molecules. Two mechanisms of deformation and conformational stability of collagen are proposed: (i) interlocking gear analogy, and (ii) interplay between level-1 and level-2 hierarchies, the hydrogen bonds acting as an intermediary. The multiscale model of collagen fibril is developed by bridging nanomechanical molecular properties of collagen into the finite element model. This model shows that the molecular interactions between collagen and mineral significantly affect the mechanical response of collagen fibril. The deformation mechanism of collagen fibril and the effect of collagen crosslinks are also elucidated in this study. In recent years Na-montmorillonite has been proposed for bone regenerative medicine, besides other existing engineering applications. The molecular dynamics study of Na-montmorillonite at different levels of hydration is carried out to understand the role played by molecular interactions in the swelling behavior of Na-montmorillonite. This study greatly adds to our understanding of clay swelling, and provides important insights for modeling exfoliation and particle breakdown in clay. / NDSU Presidential Doctoral Graduate Fellowship / ND EPSCoR Doctoral Dissertation Assistantship
28

Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks

Kalbitzer, Liv, Pompe, Tilo 07 February 2019 (has links)
Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications.
29

Mechanistic study of bovine insulin fibril formation

Ha, Emily 01 January 2005 (has links) (PDF)
The effect of environmental condition on the mechanism and kinetics of fibril formation for bovine insulin were investigated. Results showed environmental conditions played a significant role in determining the mechanism and kinetics of fibril formation. Increased protein concentration, elevated temperature, and higher ionic strengths induced insulin to form fibrils through oligomeric intermediates that were consistent with the nucleated conformational conversion (NCC) mechanism. Bovine insulin was also shown to generate fibrils without formation of oligomeric intermediates at study conditions of lower protein concentration, lower temperature, and lower ionic strength. Fibril formation without oligomeric intermediate can be described by the nucleated polymerization (NP) mechanism. Different relative amounts of oligomeric intermediate were generated at the various combinations of protein concentration, temperature, and ionic strength. The kinetic parameters, lag time, and rate of fibril formation, correlated with the relative amount of oligomeric intermediates detected. Longer lag times and slower rates of fibril formation were observed with greater amounts of oligomeric intermediate present. The effects of excipients, trifluoroethanol, ethanol, glycerol, and urea on the apparent rate constants of oligomeric intermediate and fibril formation were also investigated. At the concentrations studied, all the excipients tested were observed to decrease the rate and relative amount of oligomeric intermediate formation in an excipient concentration-dependent manner. The excipients were less effective at preventing fibril formation. In conclusion, bovine insulin can form fibrils with and without oligomeric intermediates. Protein concentration and environmental conditions, such as temperature, ionic strength, and excipients played a significant role in determining the relative amount of oligomeric intermediates, which in turn, determined the mechanism and kinetics of bovine insulin fibril formation under the conditions studied.
30

Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1–40) Peptides

Fritzsch, Jacob, Korn, Alexander, Surendran, Dayana, Krueger, Martin, Scheidt, Holger A., Mote, Kaustubh R., Madhu, Perunthiruthy K., Maiti, Sudipta, Huster, Daniel 02 May 2023 (has links)
Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway.

Page generated in 0.0485 seconds