• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 80
  • 29
  • 25
  • 18
  • 14
  • 14
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 520
  • 269
  • 189
  • 96
  • 87
  • 58
  • 50
  • 49
  • 44
  • 42
  • 42
  • 42
  • 41
  • 41
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Role fibroblastů při hojení ran a rakovině / Role of fibroblasts in wound healing and cancer

Mateu Sanz, Rosana January 2021 (has links)
Fibroblasts are stromal cells ubiquitously present in the human body. They often appear in a quiescent state and can become activated in response to tissue remodeling signals. Activated fibroblasts acquire biosynthetic, pro-inflammatory and contractile properties, key functions for wound healing. In addition, the presence of permanently activated fibroblasts is one of the hallmarks of cancer. The purpose of this work is to investigate the differences between newborn and adult fibroblasts and keratinocytes in their implication in scarless wound healing, the origin of cancer associated fibroblasts (CAF)s and the influence of fibroblasts in melanoma invasion. Evidence suggests that wounds heal almost without scar in newborns. To understand the mechanisms that contribute to scarless wound healing we focused on the differences between newborn and adult fibroblasts and keratinocytes, which are cells present in human skin and participating in wound healing process. A comparison of the expression profile between newborn and adult fibroblasts showed differentially regulated genes related to the acute phase of the inflammatory response and ECM organization, traits involved in wound healing. We also found that newborn fibroblast showed higher differentiation potential, exhibited markers of pluripotency and...
162

Evaluating the role of fibroblast activation protein and fibroblast growth factor 21 in growth hormone-induced adipose tissue fibrosis

Geitgey, Delaney Kate January 2020 (has links)
No description available.
163

Control of cardiogenesis and homeostasis by cardiac fibroblasts

Sur, Sumon 04 May 2016 (has links)
No description available.
164

A morphological study of the dermal fibroblast

Mazyala, Eric John 12 1900 (has links)
Thesis (MScMedSc (Biomedical Sciences. Anatomy and Histology)--Stellenbosch University, 2008.
165

Investigation of mechanotransductory mechanisms in the pathogenesis of lung fibrosis

Fiore, Vincent F. 27 May 2016 (has links)
Fibrosis of vital organs remains one of the leading causes of death in the developed world, where it occurs predominantly in soft tissues (liver, lung, kidney, heart) through fibroblast proliferation and deposition of extracellular matrix (ECM). In the process of fibrosis, remodeling and deposition of ECM results in stiffening of cellular microenvironment; cells also respond to these changes in the stiffness through engagement of their cytoskeleton and signaling via cell-ECM contacts. Thus, understanding to what extent the stiffness of the cellular microenvironment changes as a consequence of fibrotic progression, and how cells respond to this change, is critical. In this thesis, we quantitatively measured stiffness of the lung parenchyma and its changes during fibrosis. We find that the average stiffness increases by approximately 10-fold. We then investigated how changes in ECM rigidity affect the cytoskeletal phenotype of lung fibroblasts. We find a complex relation between expression of the glycoprotein Thy-1 (CD90) and ECM rigidity-dependent cytoskeletal phenotype (i.e. “mechanotransduction”). Finally, we investigate a mechanism for the regulation of rigidity sensing by Thy-1 and its involvement in intracellular signaling through cell-ECM contacts. Taken together, this work helps define in vivo parameters critical to the fibrogenesis program and to define unique cellular phenotypes that may respond or contribute to mechanical homeostasis in fibrotic diseases.
166

MT1-MMP in craniofacial development and FGF signaling

Chan, Kui-ming., 陳居明. January 2007 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
167

Computer Simulation and Modeling of Physical and Biological Processes using Partial Differential Equations

Shen, Wensheng 01 January 2007 (has links)
Scientific research in areas of physics, chemistry, and biology traditionally depends purely on experimental and theoretical methods. Recently numerical simulation is emerging as the third way of science discovery beyond the experimental and theoretical approaches. This work describes some general procedures in numerical computation, and presents several applications of numerical modeling in bioheat transfer and biomechanics, jet diffusion flame, and bio-molecular interactions of proteins in blood circulation. A three-dimensional (3D) multilayer model based on the skin physical structure is developed to investigate the transient thermal response of human skin subject to external heating. The temperature distribution of the skin is modeled by a bioheat transfer equation. Different from existing models, the current model includes water evaporation and diffusion, where the rate of water evaporation is determined based on the theory of laminar boundary layer. The time-dependent equation is discretized using the Crank-Nicolson scheme. The large sparse linear system resulted from discretizing the governing partial differential equation is solved by GMRES solver. The jet diffusion flame is simulated by fluid flow and chemical reaction. The second-order backward Euler scheme is applied for the time dependent Navier-Stokes equation. Central difference is used for diffusion terms to achieve better accuracy, and a monotonicity-preserving upwind difference is used for convective ones. The coupled nonlinear system is solved via the damped Newton's method. The Newton Jacobian matrix is formed numerically, and resulting linear system is ill-conditioned and is solved by Bi-CGSTAB with the Gauss-Seidel preconditioner. A novel convection-diffusion-reaction model is introduced to simulate fibroblast growth factor (FGF-2) binding to cell surface molecules of receptor and heparan sulfate proteoglycan and MAP kinase signaling under flow condition. The model includes three parts: the flow of media using compressible Navier-Stokes equation, the transport of FGF-2 using convection-diffusion transport equation, and the local binding and signaling by chemical kinetics. The whole model consists of a set of coupled nonlinear partial differential equations (PDEs) and a set of coupled nonlinear ordinary differential equations (ODEs). To solve the time-dependent PDE system we use second order implicit Euler method by finite volume discretization. The ODE system is stiff and is solved by an ODE solver VODE using backward differencing formulation (BDF). Findings from this study have implications with regard to regulation of heparin-binding growth factors in circulation.
168

The extracellular matrix regulates myoblast migration during wound healing.

Goetsch, Kyle Peter. January 2012 (has links)
Mammalian skeletal muscle can regenerate after injury and this response is primarily mediated by the satellite cell, a muscle stem cell. Following injury, satellite cells are activated to myoblasts, undergo rapid proliferation, migrate towards the injury site, and subsequently differentiate into myotubes in order to facilitate functional muscle repair. Fibrosis, caused by the secretion of structural extracellular matrix (ECM) proteins such as collagen I and fibronectin, by fibroblasts, impairs complete functional repair of the muscle. In this study, the role of the microenvironment during wound conditions was assessed by analysing the effect of specific extracellular matrix and growth factors on myoblast migration. The role of the Rho/ROCK pathway as a possible mechanism in mediating the effects seen was investigated. In order to analyse wound repair in an in vitro setting, we optimised and improved a wound healing model specifically designed for skeletal muscle repair. To this end we also developed a co-culture assay using primary myoblasts and fibroblasts isolated from the same animal. The studies showed that collagen I and fibronectin both increased myoblast migration in a dose-dependent manner. Decorin displayed opposing effects on cellular movement, significantly increasing collagen I-stimulated, but not fibronectin-stimulated, migration of myoblasts. ROCK inhibitor studies revealed a significant increase in migration on uncoated plates following inhibition with Y-27632 compared to untreated control. When cells were cultured on ECM components (Matrigel, collagen I, or fibronectin), the inhibitory effect of Y-27632 on migration was reduced. Analysis of ROCK and vinculin expression, and localization at the leading front, showed that ROCK inhibition resulted in loosely packed focal adhesion complexes (matrix dependent). A reduced adhesion to the ECM could explain the increased migration rates observed upon inhibition with Y-27632. We also investigated the role of TGF-β and decorin during wound repair, as TGF-β is a known pro-fibrotic agent. TGF-β treatment decreased wound closure rates; however, the addition of decorin with TGF-β significantly increased wound closure. The addition of ECM components, Matrigel and collagen I enhanced the effect seen in response to TGF-β and decorin; however, fibronectin negated this effect, with no increase in migration seen compared to the controls. In conclusion, the importance of extracellular matrix components in regulating myoblast migration and therefore skeletal muscle wound repair was demonstrated. We emphasize that, in order to gain a better understanding of skeletal muscle wound repair, the combination of ECM and growth factors released during wounding need to be utilised in assays which mimic the in vivo environment more closely. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
169

Role of fibroblast growth factor signalling on the regulation of embryonic stem cells

Freile Vinuela, Paz January 2008 (has links)
Fibroblast growth factor (FGF) signalling plays many fundamentally important roles during the development of the mammalian embryo. However, its effects on pluripotent stem cells derived from mouse and human embryos appear to be markedly different. FGF2 is routinely added to culture medium for propagating undifferentiated human (hES) cells, whereas in mouse (mES) cell cultures FGFs have been described as regulators of their differentiated progeny. To assess the effect of FGF signalling on undifferentiated mES cells, the effects of FGF2 and 4 were analysed in the presence of saturating and sub-saturating levels of the inhibitor of differentiation, leukaemia inhibitory factor (LIF). Mouse ES cell self-renewal was quantified by measuring the expression of the stem cell specific reporter Oct4-LacZ in biochemical and fluorometric assays. Treatment with FGF reduced the expression of the OCT4-LacZ reporter, even under saturating concentrations of LIF and this was mirrored by decreased levels of OCT4 protein. Furthermore, treatment with FGF leads to upregulation of the ectodermal differentiation marker Pax6. These results suggest that FGF signalling has a direct impact on undifferentiated mES cells, and actively promotes their differentiation. To asses the effect of FGF signalling on hES cells without the influence of undefined factors, a feeder and serum free system was developed. Cells growing in this conditions for >20 passages maintained expression of surface (SSEA3 and TRA1-60 and 81) and internal (OCT4) markers specific for undifferentiated hES cells. Expression of these markers was dependant on the continuous presence of FGF2. Indeed, withdrawal of FGF2 resulted in a rapid decrease of in hES cell growth and of the emergence of cell flattened morphology and of the surface marker SSEA1, changes typically associated with differentiation. Two important signals activated by FGF in hES cells are the ERK/MAPK and PI3K pathways. To assess their functional relevance, hES cell cultures were treated with the drugs UO126 and LY294002, inhibitors of the MAPK and PI3K pathways respectively. Drug mediated suppression of the phosphorylation of these pathways, correlated with a reduction in cell growth, flattening of the colonies and reduction in SSEA4 expression. Use of SB431542, specific inhibitor of TGFβ/activin type I receptor kinase (Alk5) also resulted in the flattening of the colonies and the appearance of dispersed cells. Therefore, inhibition of MAPK and PI3K appears to impair growth and self-renewal in hES cells and this may be happening in conjunction with TGFβ/Activin pathway. Taken together, these results suggest that FGF signalling has opposite effects in mouse and human ES cells: inducing differentiation in mES and sustaining self-renewal in hES.
170

L’activation du PDGFR favorise le phénotype agressif des synoviocytes de patients atteints de polyarthrite rhumatoïde via la formation d’invadosomes / Platelet-derived growth factor receptor activation promotes the prodestructive invadosome-forming phenotype of synoviocytes from patients with rheumatoid arthritis

R. Lavoie, Roxane January 2017 (has links)
La polyarthrite rhumatoïde (PR) est une maladie auto-immune qui mène à une inflammation chronique et à une destruction progressive des articulations. Les effecteurs principaux de cette pathologie sont les synoviocytes de type fibroblastique (FLS). Ces derniers utilisent les invadosomes, des structures riches en actine et en métalloprotéases, afin de dégrader la matrice extracellulaire (ECM). Ce phénotype pro-destructif résulte d’une activation des FLS par différents facteurs de croissance, dont le PDGF et le TGF-β. Les récepteurs à activité tyrosine kinase, dont le PDGFR, sont impliqués dans la pathogenèse de plusieurs maladies, incluant le cancer et la PR. Une activation de ces récepteurs peut mener, entre autres, à la survie, à la différenciation et à la prolifération des cellules. L’étude présentée dans ce mémoire montre que parmi les RTK les plus communs, le PDGFR est spécifiquement phosphorylé chez les cellules synoviales de patients atteints de PR, contrairement aux cellules de patients non arthritiques ou atteints d’arthrose. De plus, l’activation du PDGFR résulte en une augmentation de la formation d’invadosomes par les FLS. Nous avons aussi démontré que la formation d’invadosomes par le PDGFR nécessite l’activation de la voie de signalisation PI3K/Akt faisant intervenir les isoformes α et δ de la PI3K. De plus, l'inhibition de l’activation du PDGFR ou la neutralisation du PDGF endogène inhibe la formation des invadosomes et la dégradation de l'ECM par les synoviocytes, ce qui suggère la présence d'une boucle d'activation autocrine impliquant le PDGF. Parmi les isoformes du PDGF, nous avons démontré que le PDGF-B est exprimé de façon significativement plus élevée dans les synoviocytes provenant de patients atteints de PR. Nos données indiquent également une association entre le PDGF et le TGF-β dans la formation des invadosomes. Cette dernière implique la production autocrine de ligands du PDGFR induite par le TGFβ via la signalisation TβR1/Smad et PI3K/Akt. L’inhibition des isoformes de PI3K de classe I indique que le PI3Kα est impliquée de façon sélective dans l'expression de PDGF-B. Ces résultats démontrent que le PDGFR est un RTK nécessaire au phénotype destructeur des cellules synoviales d’arthrite. Ils fournissent aussi des preuves d'une association entre le TGF-β et le PDGFR dans la formation d’invadosomes chez les synoviocytes de patients atteints de la PR. / Abstract : Rheumatoid arthritis (RA) is an autoimmune disease that leads to chronic inflammation and progressive joint destruction. The main effectors of this pathology are fibroblast-like synoviocytes (FLS). They use invadosomes, actin-rich structures that concentrate metalloproteinases to degrade the extracellular matrix (ECM). This pro-destructive phenotype is due to the activation of FLS by various growth factors, including PDGF and TGF-β. Receptor tyrosine kinases, including PDGFR, are involved in the pathogenesis of several diseases, including cancer and RA. Activation of these receptors may lead to cell survival, differentiation and proliferation. The study presented in this thesis shows that among the most common RTKs, PDGFR is specifically phosphorylated in synovial cells of RA patients, unlike cells of non-arthritic or osteoarthritic patients. In addition, activation of PDGFR results in an increase in invadosome formation by FLS. We also shown that formation of invadosome by PDGFR requires the activation of the signaling pathway PI3K/Akt, that specifically involves the α and δ isoforms of PI3K. In addition, inhibition of PDGFR activation or neutralization of endogenous PDGF inhibits the formation of invadosomes and the degradation of the ECM by synoviocytes, suggesting the presence of an autocrine activation loop involving PDGF. Among the PDGF isoforms, we demonstrate that PDGF-B expression is significantly higher in synoviocyte cell lines from RA patients. Our data also indicates an association between PDGF and TGF-β for invadosome formation that involves autocrine production of PDGF-B induced by TGF-β through the Smad/T β R1 and PI3K/Akt pathways. Inhibition of class I PI3K isoforms indicates that PI3K α is selectively involved in the expression of PDGF-B. These results demonstrate that PDGFR is an RTK necessary for the pro-destructive phenotype of RAFLS. They also provide evidence of an association between TGF-β and PDGFR in invadosome formation by synovial cells from RA patients.

Page generated in 0.0304 seconds