1 |
Linear Transformations in Linear SpacesWestley, Kent N. 08 1900 (has links)
This thesis is a study of linear spaces and linear transformations in normed linear spaces. The notion of a field, in particular the complex number field, is assumed in this paper.
|
2 |
Étude du codage réseau au niveau de la couche physique pour les canaux bidirectionnels à relais / Physical-layer network coding for two-way relay channelsSmirani, Sinda 10 February 2014 (has links)
Le codage réseau est apparu comme une technique alternative au routage au niveau de la couche réseau permettant d'améliorer le débit et d'optimiser l'utilisation de la capacité du réseau. Récemment, le codage réseau a été appliqué au niveau de la couche physique des réseaux sans-fil pour profiter de la superposition naturelle des signaux effectuée par le lien radio. Le codage réseau peut être vue comme un traitement interne du réseau pour lequel différentes techniques de relayage peuvent être utilisées. Cette thèse étudie un ensemble de traitements ayant des compromis variés en terme de performance et complexité. Nous considérons le canal bidirectionnel à relais, un modèle de canal de communication typique dans les réseaux coopératifs, où deux terminaux s'échangent mutuellement des messages par l'intermédiaire d'un relais. La communication se déroule en deux phases, une phase à accès multiple et une phase de broadcast. Pour ce scénario, nous analysons, dans une première partie, une stratégie de "decode-and-forward". Nous considérons, pour cette étude, des alphabets de taille finie et nous calculons les probabilités moyennes d'erreur de bout-en-bout en se basant sur la métrique d'exposant d'erreur du codage aléatoire. Puis, nous dérivons les régions des débits atteignables par rapport à une probabilité d'erreur maximale tolérable au niveau de chaque nœud. Dans une deuxième partie de la thèse, nous proposons deux schémas de codage réseau pratiques, avec complexité réduite, qui se basent sur la stratégie de relayage "compress-and-forward" (CF). Le premier schéma utilise un codage en réseau de points imbriqués (nested lattices). Le deuxième schéma est une version améliorée qui permet d'atteindre des débits de données supérieurs pour l'utilisateur qui a les meilleures conditions canal. Nous construisons les régions des débits atteignables par les deux schémas proposés tout en optimisant la répartition du temps alloué à chacune des deux phases de transmission. Après l'étude du régime asymptotique, nous analysons le schéma de codage CF avec des réseaux de points de dimension finie. Nous nous concentrons sur le problème de la transmission analogique où la distorsion est optimisée. Enfin, nous étudions l'application d'un schéma de codage, basé sur la stratégie CF avec des réseaux de points imbriqués, pour le canal bidirectionnel à canaux parallèles. Ainsi, nous présentons deux régions de débits atteignables selon la technique de traitement, conjoint ou séparé, des sous-canaux par le relais. / Network coding has emerged as an alternative technique to routing that enhances the throughput at the network layer. Recently, network coding has been applied at the physical layer to take advantage of the natural signal superposition that occurs in the radio link. In this context, the physical-layer network coding can be seen as an in-network processing strategy for which multiple forwarding schemes can be proposed. This thesis investigates a set of processing schemes tailored to the network coding at the physical layer with various compromises between performance and complexity. We consider a two-way relay channel, a typical communication system in cooperative networks, where two terminals communicate with each other via a relay node. This communication occurs during two transmission phases, namely a multiple-access phase and a broadcast phase. For TWRC scenario, we first analyze a decode-and-forward strategy with finite size alphabets. We calculate the end-to-end average error probabilities based on random coding error exponents. Then, we derive the achievable rate regions with respect to a maximal probability of error allowed at each terminal. Next, we propose two low-complexity and practical schemes based on compress-and-forward relaying strategy. The first scheme employs nested lattice coding. The second is an improved version which enables higher data rates for the user experiencing the best channel conditions. We present an information-theoretic framework to reconstruct the achievable rate regions of both schemes by considering optimal time division between both transmission phases. After the asymptotic regime analysis, we study single-layer lattice coding scheme with finite dimension lattices. We focus on the analog transmission problem where the distortion is optimized. Finally, we investigate single-layer lattice coding scheme for parallel Gaussian two-way relay channel. We present two achievable rate regions based on whether the relay processes all the sub-channels jointly or separately.
|
Page generated in 0.0802 seconds