• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1159
  • 272
  • 249
  • 168
  • 147
  • 112
  • 25
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 6
  • Tagged with
  • 2851
  • 314
  • 274
  • 259
  • 257
  • 230
  • 203
  • 177
  • 153
  • 139
  • 134
  • 127
  • 124
  • 123
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Economic impact of fires in buildings /

Esposito, Dominic C. January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University. / Includes bibliographical references (p. 228-236). Also available in electronic format on the Internet.
62

Analysis of Ontario fires and reliability of active fire protection systems /

Juneja, Chandra S. January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 322-325). Also available in electronic format on the Internet.
63

Travelling fires for structural design

Stern-Gottfried, Jamie January 2011 (has links)
Traditional methods for specifying thermal inputs for the structural fire analysis of buildings assume uniform burning and homogeneous temperature conditions throughout a compartment, regardless of its size. This is in contrast to the observation that accidental fires in large, open-plan compartments tend to travel across floor plates, burning over a limited area at any one time. This thesis reviews the assumptions inherent in the traditional methods and addresses their limitations by proposing a methodology that considers travelling fires for structural design. Central to this work is the need for strong collaboration between fire safety engineers to define the fire environment and structural fire engineers to assess the subsequent structural behaviour. The traditional hypothesis of homogeneous temperature conditions in postflashover fires is reviewed by analysis of existing experimental data from wellinstrumented fire tests. It is found that this assumption does not hold well and that a rational statistical approach to fire behaviour could be used instead. The methodology developed in this thesis utilises travelling fires to produce more realistic fire scenarios in large, open-plan compartments than the conventional methods that assume uniform burning and homogeneous gas phase temperatures which are only applicable to small compartments. The methodology considers a family of travelling fires that includes the full range of physically possible fire sizes iv within a given compartment. The thermal environment is split into two regions: the near field (flames) and the far field (smoke away from the flames). Smaller fires travel across a floor plate for long periods of time with relatively cool far field temperatures, while larger fires have hotter far field temperatures but burn for shorter durations. The methodology is applied to case studies showing the impact of travelling fires on generic concrete and steel structures. It is found that travelling fires have a considerable impact on the performance of these structures and that conventional design approaches cannot automatically be assumed to be conservative. The results indicate that medium sized fires between 10% and 25% of the floor area are the most onerous for a structure. Detailed sensitivity analyses are presented, showing that the structural design and fuel load have a larger impact on structural behaviour than any numerical or physical parameter required for the methodology. This thesis represents a foundation for using travelling fires for structural analysis and design. The impact of travelling fires is critical for understanding true structural response to fire in modern, open-plan buildings. It is recommended that travelling fires be considered more widely for structural design and the structural mechanics associated with them be studied in more detail. The methodology presented in this thesis provides a key framework for collaboration between fire safety engineers and structural fire engineers to achieve these aims.
64

Building Evaluation for Manual Suppression

Callery, James Francis 21 January 2005 (has links)
Recent improvements in equipment used by firefighters has increased the value of manual suppression in buildings. However, because there is no evaluation method available, the effectiveness of manual suppression can not be incorporated into a fire safety analysis of a building. This thesis develops a method for evaluating manual suppression in buildings. he evaluation is done through an analysis of the paths through a building firefighters will use to attack a fire. The analysis considers the building, fire and fire department factors influencing progress towards teh fire. The fire attack path analysis yeilds a value relating the relative difficulty of a path.
65

Smoke Movement Analysis (Smoke Transport Within a Corridor)

Cummings, W. Mark 18 November 2004 (has links)
"A series of full-scale fire tests were performed, using a fire compartment and an adjoining long (30+ m) corridor, as part of an effort to quantify the dynamics associated with smoke transport within a corridor. The tests were performed at the U.S. Coast Guard Research and Development Center’s Fire and Safety Test Detachment in Mobile, Alabama on board the Test Vessel Mayo Lykes. The resulting empirical data was analyzed in an effort to develop a method that could be used to estimate the movement of smoke within a corridor. The objective is to potentially incorporate this method into a smoke movement analysis “tool” that could, in turn, be used in conjunction with a fire safety analysis methodology previously developed by the U.S. Coast Guard; the Ship fire Safety Engineering Methodology (SFSEM). The goal is to develop a smoke movement analysis “module” that can be utilized in conjunction with the SFSEM when conducting an overall fire safety analysis of a ship. Of particular interest is the speed at which the smoke propagates along the length of the corridor. The focus of a smoke movement module would be life safety. A conservative assumption is made that if smoke is present in sufficient quantities to fill a corridor, then the corridor is to be considered untenable and not available as a means of egress. No attempt is made to address toxicity or density issues associated with smoke. This analysis developed correlations for the corridor smoke velocity, both as a function of the heat release rate of the associated fire and the upper layer temperatures within the fire compartment. Problems associated with the data collection and the narrow range of fire sizes used had a detrimental impact on the confidence level in the correlation based on heat release rate. The data do appear to confirm the results of previous efforts that indicated a weak relationship between the heat release rate and smoke velocity, on the order of the one-third to one-fourth power. The temperature data tended to be less problematic. This correlation shows promise for potential use with both the SFSEM and other existing computer models/routines. However, unlike previous studies of this relationship, the results of these data suggest that the velocity-temperature relationship is linear and not a square-root function. The test data were compared to predictive results using the CORRIDOR routine within FPETOOL. In general, the CORRIDOR results provided a reasonable good correlation to the tests data. Both the wave depth and temperature loss within the wave, as a function of distance, were consistently over-predicted. The velocity results were mixed, but were generally within 20 percent of the test data. The results of this study show promise, with respect to developing a correlation that can be used a method for predicting smoke movement in a corridor. However, due to the questionable nature of some of the data estimates, coupled with both a lack of sufficient number of tests and a limited range of fire sizes used, additional test data will be required to further validate the accuracy and refine the correlation(s) suggested by this work."
66

FDS modelling of hot smoke testing, cinema and airport concourse

Webb, Alex K. January 2006 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: Hot smoke test; FDS; CFD; Computer modelling. Includes bibliographical references (p.105-110).
67

Synergistic effect of natural zeolites on flame retardant additives/

Demir, Hasan. Ülkü, Semra January 2004 (has links)
Thesis (Master)--İzmir Institute of Technology,İzmir, 2004 / Includes bibliographical references (leaves. 93-97).
68

Space-time analysis of forest fires /

Díaz Avalos, Carlos, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (110-119).
69

A constructivist grounded theory of firefighter perceptions of stress, coping and the relationship to health

Hunter, Sara B. G. January 1900 (has links)
Thesis (M.A.)--Brock University, 2005. / Includes bibliographical references (leaves 180-192). Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
70

A constructivist grounded theory of firefighter perceptions of stress, coping and the relationship to health

Hunter, Sara B. G. January 1900 (has links)
Thesis (M.A.)--Brock University, 2005. / Includes bibliographical references (leaves 180-192).

Page generated in 0.0288 seconds