Spelling suggestions: "subject:"fivehole probes"" "subject:"five.however probes""
1 |
NUMERICAL ANALYSIS ON FIVE-HOLE PROBES TO STUDY THE EFFECT OF REYNOLDS NUMBER AND PROBE GEOMETRY IN SUBSONIC FLOWSKush Sreen (20441627) 17 December 2024 (has links)
<p dir="ltr">This work seeks to characterize the response of five-hole probes at various Reynolds numbers, Mach numbers, pitch and yaw angles and probe geometries using numerical simulations. This thesis aims to achieve the objective by developing a computational model of the five-hole probe in open jet flow. A structured 3D grid is generated to ensure all relevant flow field structures are resolved. The response of the five-hole probe is measured by investigating the change in the yaw and pitch pressure coefficients as a function of the Reynolds and Mach numbers. The numerical data is used to study some of the flow features around the head of the probe. It is used to study the variation of low-pressure bubbles and separation zones near the probe. A probe geometry with higher length to diameter ratio is used to study the effect of the probe stem on the response of the five-hole probe. Lastly, experimental calibration of the five-hole probe is carried out at select operating conditions in the openjet of the PETAL wind tunnel facility to study the response of a real system.</p>
|
2 |
A PROBABILISTIC APPROACH TO UNCERTAINTY IN TURBINE EFFICIENCY MEASUREMENTLakshya Bhatnagar (5930546) 20 June 2022 (has links)
<p> Efficiency is an essential metric for assessing turbine performance. Modern turbines rely heavily on numerical computational fluid dynamic (CFD) tools for design improvement. With more compact turbines leading to lower aspect ratio airfoils, the influence of secondary flows is significant on performance. Secondary flows and detached flows, in general, remain a challenge for commercial CFD solvers; hence, there is a need for high fidelity experimental data to tune these solvers used by turbine designers. Efficiency measurements in engine-representative test rigs are challenging for multiple reasons; an inherent problem to any experiment is to remove the effects specific to the turbine rig. This problem is compounded by the narrow uncertainty band required, ideally less than 0.5% uncertainty, to detect the incremental improvements achieved by turbine designers. Efficiency measurements carried out in engine-representative turbine rigs have traditionally relied upon strong assumptions, such as neglecting heat transfer effects. Furthermore, prior to this research there was no framework to compute uncertainty propagation that combines both inputs from experiments and computational tools. </p>
<p>This dissertation presents a comprehensive methodology to obtain high-fidelity adiabatic efficiency data in engine-representative turbine facilities. This dissertation presents probabilistic sampling techniques to allow for uncertainty propagation. The effect of rig-specific effects such as heat transfer and gas properties, on efficiency is demonstrated. Sources of uncertainty are identified, and a framework is presented which divides the sources into bias and stochastic. The framework allows the combination of experimental and numerical uncertainty. The accuracy of temperature and aerodynamic pressure probes, used for efficiency determination, is quantified. Corrections for those effects are presented that rely on hybrid numerical and experimental methods. Uncertainty is propagated through these methods using numerical sampling. </p>
<p>Finally, two test cases are presented, a stator vane in an annular cascade and a two-stage turbine in a rotating rig. The performance is analyzed using the methods and corrections developed. The uncertainty on the measured efficiency is similar to literature but the uncertainty framework allows an uncertainty estimate on the adiabatic efficiency. </p>
|
3 |
Experimental Aerothermal Performance of Turbofan Bypass Flow Heat ExchangersVillafañe Roca, Laura 07 January 2014 (has links)
The path to future aero-engines with more efficient engine architectures requires advanced
thermal management technologies to handle the demand of refrigeration and lubrication. Oil
systems, holding a double function as lubricant and coolant circuits, require supplemental
cooling sources to the conventional fuel based cooling systems as the current oil thermal
capacity becomes saturated with future engine developments. The present research focuses on
air/oil coolers, which geometrical characteristics and location are designed to minimize
aerodynamic effects while maximizing the thermal exchange. The heat exchangers composed
of parallel fins are integrated at the inner wall of the secondary duct of a turbofan. The
analysis of the interaction between the three-dimensional high velocity bypass flow and the
heat exchangers is essential to evaluate and optimize the aero-thermodynamic performances,
and to provide data for engine modeling. The objectives of this research are the development
of engine testing methods alternative to flight testing, and the characterization of the
aerothermal behavior of different finned heat exchanger configurations.
A new blow-down wind tunnel test facility was specifically designed to replicate the engine
bypass flow in the region of the splitter. The annular sector type test section consists on a
complex 3D geometry, as a result of three dimensional numerical flow simulations. The flow
evolves over the splitter duplicated at real scale, guided by helicoidally shaped lateral walls.
The development of measurement techniques for the present application involved the design
of instrumentation, testing procedures and data reduction methods. Detailed studies were
focused on multi-hole and fine wire thermocouple probes.
Two types of test campaigns were performed dedicated to: flow measurements along the test
section for different test configurations, i.e. in the absence of heat exchangers and in the
presence of different heat exchanger geometries, and heat transfer measurements on the heat
exchanger. As a result contours of flow velocity, angular distributions, total and static
pressures, temperatures and turbulence intensities, at different bypass duct axial positions, as
well as wall pressures along the test section, were obtained. The analysis of the flow
development along the test section allowed the understanding of the different flow behaviors
for each test configuration. Comparison of flow variables at each measurement plane
permitted quantifying and contrasting the different flow disturbances. Detailed analyses of the
flow downstream of the heat exchangers were assessed to characterize the flow in the fins¿
wake region. The aerodynamic performance of each heat exchanger configuration was
evaluated in terms of non dimensional pressure losses. Fins convective heat transfer
characteristics were derived from the infrared fin surface temperature measurements through a
new methodology based on inverse heat transfer methods coupled with conductive heat flux
models. The experimental characterization permitted to evaluate the cooling capacity of the
investigated type of heat exchangers for the design operational conditions. Finally, the
thermal efficiency of the heat exchanger at different points of the flight envelope during a
typical commercial mission was estimated by extrapolating the convective properties of the
flow to flight conditions. / Villafañe Roca, L. (2013). Experimental Aerothermal Performance of Turbofan Bypass Flow Heat Exchangers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34774
|
Page generated in 0.0623 seconds