Spelling suggestions: "subject:"fixedpoint"" "subject:"fixed9point""
71 |
Fixed Point Scheme Of The Hilbert Scheme Under A 1-dimensional Additive Algebraic Group ActionOzkan, Engin 01 March 2011 (has links) (PDF)
In general we know that the fixed point locus of a 1-dimensional additive linear algebraic
group,G_{a}, action over a complete nonsingular variety is connected. In thesis, we explicitly
identify a subset of the G_{a}-fixed locus of the punctual Hilbert scheme of the d points,Hilb^{d}(P^{2} / 0),in
P^{2}. In particular we give an other proof of the fact that Hilb^{d}(P^{2} / 0) is connected.
|
72 |
On The Index Of Fixed Point SubgroupTurkan, Erkan Murat 01 August 2011 (has links) (PDF)
Let G be a finite group and A be a subgroup of Aut(G). In this work, we studied the influence of the index of fixed point subgroup of A in G on the structure of G.
When A is cyclic, we proved the following:
(1) [G,A] is solvable if this index is squarefree and the orders of G and A are coprime.
(2) G is solvable if the index of the centralizer of each x in H-G is squarefree where H denotes the semidirect product of G by A.
Moreover, for an arbitrary subgroup A of Aut(G) whose order is coprime to the order of G, we showed that when G is solvable, then the Fitting length f([G,A]) of [G,A] is bounded above by
the number of primes (counted with multiplicities) dividing the index of fixed point subgroup of A in G and this bound is best possible.
|
73 |
Viscosity Approximation Methods for Generalized Equilibrium Problems and Fixed Point ProblemsHuang, Yun-ru 20 June 2008 (has links)
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions of a generalized equilibrium problem (for short, GEP) and the set of fixed points of a nonexpansive mapping in a Hilbert space. First, by using the well-known KKM technique we derive the existence and uniqueness of solutions of the auxiliary problems for the GEP. Second, on account of this result and Nadler's theorem, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping. Furthermore, it is proven that the sequences generated by this iterative scheme converge strongly to a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping.
|
74 |
ANALYTICAL METHODS FOR TRANSPORT EQUATIONS IN SIMILARITY FORMTiwari, Abhishek 01 January 2007 (has links)
We present a novel approach for deriving analytical solutions to transport equations expressedin similarity variables. We apply a fixed-point iteration procedure to these transformedequations by formally solving for the highest derivative term and then integrating to obtainan expression for the solution in terms of a previous estimate. We are able to analyticallyobtain the Lipschitz condition for this iteration procedure and, from this (via requirements forconvergence given by the contraction mapping principle), deduce a range of values for the outerlimit of the solution domain, for which the fixed-point iteration is guaranteed to converge.
|
75 |
Multiplicity of positive solutions of even-order nonhomogeneous boundary value problemsHopkins, Britney. Henderson, Johnny. January 2009 (has links)
Thesis (Ph.D.)--Baylor University, 2009. / Includes bibliographical references (p. 77-79).
|
76 |
Simulation and Mathematical Analysis of a Task Partitioning Model of a Colony of AntsSödergren, Viktor January 2016 (has links)
In this thesis we study a mathematical model that describes task partitioning in a colony of ants. This process of self-organization is modeled by a nonlinear coupled system of rst order autonomous ordinary dierential equations. We discuss how this system of equations can be derived based on the behavior of ants in a colony. We use GNU Octave (a high-level programming language) to solve the system of equations numerically for dierent sets of parameters and show how the solutions respond to changes in the parameter values. Finally, we prove that the model is well-posed locally in time. We rewrite the system of ordinary dierential equations in terms of a system of coupled Volterra integral equations and look at the right-hand side of the system as a nonlinear operator on a Banach space. By doing so, we have transformed the problem of showing existence and uniqueness of solutions to a system of ordinary dierential equations into a problem of showing existence and uniqueness of a xed point to the corresponding integral operator. Additionally, we use Gronwall's inequality to prove the stability of solutions with respect to data and parameters.
|
77 |
Deformabilidade sobre S^1 a livre de ponto fixo para auto-aplicações de T-fibrados e Reidemeister sobre S^1 / Deformability over S^1 of self-maps of T-bundles into a fixed point free map and Reidemeister over S^1Gustavo de Lima Prado 25 March 2010 (has links)
Classificação das auto-aplicações de fibrados, com fibra toro, que preservam fibra sobre o círculo, com a propriedade de poderem ser deformadas sobre o círculo a uma aplicação livre de ponto fixo. Ainda, investigamos a relação entre o número de Reidemeister sobre o círculo e a propriedade acima / Classification of all fiber-preserving self-maps of torus bundles over the circle by the property of being able to deform them over the circle into a fixed point free map by a fiberwise homotopy over the circle. We also investigate the relationship between Reidemeister number over the circle and the property above
|
78 |
Implementation of Elementary Functions for a Fixed Point SIMD DSP CoprocessorTomasson, Orri January 2010 (has links)
This thesis is about implementing the functions for reciprocal, square root, inverse square root and logarithms on a DSP platform. A multi-core DSP platform that consists of one master processor core and several SIMD coprocessor cores is currently being designed by a team at the Computer Engineering Department of Linköping University. The SIMD coprocessors’ arithmetic logic unit (ALU) has 16 multipliers to support vector multiplication instructions. By efficiently using the 16 multipliers, it is possible to evaluate polynomials very fast. The ALU does not have (hardware) support for floating point arithmetic, so the challenge is to get good precision by using fixed point arithmetic. Precise and fast solutions to implement the mathematical functions are found by converting the fixed point input to a soft floating point format before polynomial approximation, choosing a polynomial based on an error analysis of the polynomial approximation, and using Newton-Raphson or Goldschmidt iterations to improve the precision of the polynomial approximations. Finally, suggestions are made of changes and additions to the instruction set architecture, in order to make the implementations faster, by efficiently using the currently existing hardware.
|
79 |
Digital Δ-Σ Modulation:variable modulus and tonal behaviour in a fixed-point digital environmentBorkowski, M. (Maciej) 28 October 2008 (has links)
Abstract
Digital delta-sigma modulators are used in a broad range of modern electronic sub-systems, including oversampled digital-to-analogue converters, class-D amplifiers and fractional-N frequency synthesizers.
This work addresses a well known problem of unwanted spurious tones in the modulator’s output spectrum. When a delta-sigma modulator works with a constant input, the output signal can be periodic, where short periods lead to strong deterministic tones. In this work we propose means for guaranteeing that the output period will never be shorter than a prescribed minimum value for all constant inputs. This allows a relationship to be formulated between the modulator’s bus width and the spurious-free range, thereby making it possible to trade output spectrum quality for hardware consumption.
The second problem addressed in this thesis is related to the finite accuracy of frequencies generated in delta-sigma fractional-N frequency synthesis. The synthesized frequencies are usually approximated with an accuracy that is dependent on the modulator’s bus width. We propose a solution which allows frequencies to be generated exactly and removes the problem of a constant phase drift. This solution, which is applicable to a broad range of digital delta-sigma modulator architectures, replaces the traditionally used truncation quantizer with a variable modulus quantizer. The modulus, provided by a separate input, defines the denominator of the rational output mean.
The thesis concludes with a practical example of a delta-sigma modulator used in a fractional-N frequency synthesizer designed to meet the strict accuracy requirements of a GSM base station transceiver. Here we optimize and compare a traditional modulator and a variable modulus design in order to minimize hardware consumption. The example illustrates the use made of the relationship between the spurious-free range and the modulator’s bus width, and the practical use of the variable modulus functionality.
|
80 |
Fixed points of single-valued and multi-valued mappings with applicationsStofile, Simfumene January 2013 (has links)
The relationship between the convergence of a sequence of self mappings of a metric space and their fixed points, known as the stability (or continuity) of fixed points has been of continuing interest and widely studied in fixed point theory. In this thesis we study the stability of common fixed points in a Hausdorff uniform space whose uniformity is generated by a family of pseudometrics, by using some general notations of convergence. These results are then extended to 2-metric spaces due to S. Gähler. In addition, a well-known theorem of T. Suzuki that generalized the Banach Contraction Principle is also extended to 2-metric spaces and applied to obtain a coincidence theorem for a pair of mappings on an arbitrary set with values in a 2-metric space. Further, we prove the existence of coincidence and fixed points of Ćirić type weakly generalized contractions in metric spaces. Subsequently, the above result is utilized to discuss applications to the convergence of modified Mann and Ishikawa iterations in a convex metric space. Finally, we obtain coincidence, fixed and stationary point results for multi-valued and hybrid pairs of mappings on a metric space.
|
Page generated in 0.0234 seconds