241 |
Acoustic radiation from premixed flames disturbed by turbulent velocity fluctuationsMohan, Sripathi 07 June 2004 (has links)
No description available.
|
242 |
Acoustic Characterization of Flame Blowout PhenomenonNair, Suraj 10 February 2006 (has links)
Combustor blowout is a very serious concern in modern land-based and aircraft engine combustors. The ability to sense blowout precursors can provide significant payoffs in engine reliability and life. The objective of this work is to characterize the blowout phenomenon and develop a sensing methodology which can detect and assess the proximity of a combustor to blowout by monitoring its acoustic signature, thus providing early warning before the actual blowout of the combustor. The first part of the work examines the blowout phenomenon in a piloted jet burner. As blowout was approached, the flame detached from one side of the burner and showed increased flame tip fluctuations, resulting in an increase in low frequency acoustics. Work was then focused on swirling combustion systems. Close to blowout, localized extinction/re-ignition events were observed, which manifested as bursts in the acoustic signal. These events increased in number and duration as the combustor approached blowout, resulting an increase in low frequency acoustics. A variety of spectral, wavelet and thresholding based approaches were developed to detect precursors to blowout.
The third part of the study focused on a bluff body burner. It characterized the underlying flame dynamics near blowout in greater detail and related it to the observed acoustic emissions. Vorticity was found to play a significant role in the flame dynamics. The flame passed through two distinct stages prior to blowout. The first was associated with momentary strain levels that exceed the flames extinction strain rate, leading to flame holes. The second was due to large scale alteration of the fluid dynamics in the bluff body wake, leading to violent flapping of the flame front and even larger straining of the flame. This led to low frequency acoustic oscillations, of the order of von Karman vortex shedding. This manifested as an abrupt increase in combustion noise spectra at 40-100 Hz very close to blowout. Finally, work was also done to improve the robustness of lean blowout detection by developing integration techniques that combined data from acoustic and optical sensors.
|
243 |
Modeling the Response of Premixed Flames to Flow DisturbancesPreetham, Preetham 27 September 2007 (has links)
Modeling the Response of Premixed Flames to Flow Disturbances
Preetham
178 pages
Directed by Dr. Tim Lieuwen
Low emissions combustion systems for land based gas turbines rely on a premixed or partially premixed combustion process. These systems are exceptionally prone to combustion instabilities which are destructive to hardware and adversely affect performance and emissions. The success of dynamics prediction codes is critically dependent on the heat release model which couples the flame dynamics to the system acoustics. So the principal objective of the current research work is to predict the heat release response of premixed flames and to isolate the key non-dimensional parameters which characterize its linear and nonlinear dynamics.
Explicit analytical solutions of the G- equation are derived in the linear and weakly nonlinear regime using the Small Perturbation Method (SPM). For the fully nonlinear case, the flame-flow interaction effects are captured by developing an unsteady, compressible, coupled Euler-G-equation solver with a Ghost Fluid Method (GFM) module for applying the jump conditions across the flame.
The flame s nonlinear response is shown to exhibit two qualitatively different behaviors. Depending on the operating conditions and the disturbance field characteristics, it is shown that a combustor may exhibit supercritical bifurcations leading to a single stable limit cycle amplitude or exhibit sub-critical bifurcations wherein multiple stable solutions for the instability amplitude are possible. In addition, this study presents the first analytical model which captures the effects of unsteady flame stretch on the heat release response and thus extends the applicability of current models to high frequency instabilities, such as occurring during screech. It is shown that unsteady stretch effects, negligible at low frequencies (100 s of Hz) become significant at screeching frequencies (1000 s of Hz). Furthermore, the analysis also yields insight into the significant spatial dependence of the mean and perturbation velocity field induced by the coupling between the flame and the flow field. In order to meaningfully compare the heat release response across different flame configurations, this study has identified that the reference velocity (for defining the transfer function) should be based on the effective normal velocity perturbing the flame and the Strouhal number should be based on the effective residence time of the flame wrinkles.
|
244 |
Dynamics of longitudinally forced bluff body flames with varying dilatation ratiosPlaks, Dmitriy Vital 09 November 2009 (has links)
This thesis focuses on experimentally measuring the response of varying dilatation ratio bluff body flames under harmonic excitation. Such flames are often encountered in jet engine afterburners and are susceptible to combustion instabilities. Previous work has been done modeling such flames, however, only limited experimental data has been obtained at these conditions and is the motivation for this thesis.
The focus of this work is to measure the transfer function of longitudinally forced, varying dilatation ratio bluff body flames. The transfer function is obtained by measuring flame position and flame luminosity fluctuations at the forcing frequency. Specifically, the amplitude and phase of the fluctuations are characterized as a function of flow velocity, axial location, and perturbation amplitude. These measurements are also compared to available theoretical predictions, showing that qualitative measured trends are consistent with theory. In addition, a detailed quantitative comparison is performed at one condition, showing good agreement between predictions and measurements in the near and mid-field of the flame response. However, agreement is not obtained in the far-field, indicating that continued theoretical work is needed to understand the flame response characteristics in this region.
|
245 |
Effect of harmonic forcing on turbulent flame propertiesThumuluru, Sai Kumar 15 November 2010 (has links)
Lean premixed combustors are highly susceptible to combustion instabilities, caused by the coupling between heat release fluctuations and combustor acoustics. In order to predict the conditions under which these instabilities occur and their limit cycle amplitudes, understanding of the amplitude dependent response of the flame to acoustic excitation is required. Extensive maps of the flame response were obtained as a function of perturbation amplitude, frequency, and flow velocity. These maps illustrated substantial nonlinearity in the perturbation velocity - heat release relationship, with complex topological dependencies that illustrate folds and kinks when plotted in frequency-amplitude-heat release space. A detailed analysis of phase locked OH PLIF images of acoustically excited swirl flames was used to identify the key controlling physical processes and qualitatively discuss their characteristics. The results illustrate that the flame response is not controlled by any single physical process but rather by several simultaneously occurring processes which are potentially competing, and whose relative significance depends upon forcing frequency, amplitude of excitation, and flame stabilization dynamics. An in-depth study on the effect of acoustic forcing on the turbulent flame properties was conducted in a turbulent Bunsen flame using PIV measurements. The results showed that the flame brush thickness and the local consumption speed were modulated in the presence of acoustic forcing. These results will not only be a useful input to help improve combustion dynamics predictions but will also help serve as validation data for models.
|
246 |
Response of a swirl-stabilized flame to transverse acoustic excitationO'Connor, Jacqueline 23 December 2011 (has links)
This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. A description of the velocity-coupled transverse instability mechanism is explained with companion measurements describing each of the velocity disturbance pathways. Dependence on acoustic frequency, amplitude, and field symmetry is discussed. Significant emphasis is placed on the response of a swirling flow field to a transverse acoustic field. Details of the dynamics of the vortex breakdown bubble and the shear layers are explained using a wide variety of measurements for both non-reacting and reacting flow cases. This thesis concludes with an overview of the impact of this work and suggestions for future research in this area.
|
247 |
Large eddy simulations (LES) of boundary layer flashback in wall-bounded flowsHassanaly, Malik 02 February 2015 (has links)
In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. The high reactivity of hydrogen combined with enhanced flammability lim- its (compared to natural gas) promotes flame propagation along low-speed boundary layers adjoining the combustion walls. This work focuses on the simulation of boundary layer flashback using large-eddy simulations (LES). A canonical channel configuration is studied to assess the capabilities of LES and determine the modeling requirements for boundary layer flashback simulations. To extend this work to complex geometries, a new reactive low-Mach number solver has been written in an unstructured code. / text
|
248 |
Experimental and Computational Study of Flame Inhibition Mechanisms of Halogenated Compounds in C1-C3 Alkanes FlamesOsorio Amado, Carmen H 16 December 2013 (has links)
After the restriction of different halogenated fire suppressants by the Montreal Protocol, there is an urgent need to identify environmentally friendlier alternatives. In particular, several efforts have been conducted to find substitutes of Halon 1301 (CF_(3)Br) which was considered the best in its class, not only because of its superior extinguishing performance, but also due to its relatively low toxicity. Different options have been proposed over the last decade. However, no single compound has been found to meet all of the exigent criteria. Further progress in this research requires fundamental combustion knowledge that can help us understand the unique performance of Halon 1301, to prevent this search from becoming a tedious trial-and-error process.
To this end, the present work aids in the search of fire suppressants alternatives by improving the flame inhibition mechanism understanding, starting with CF_(3)Br, which serves as a benchmark for new fire suppressants. Then, a case study of two of the most currently used fire suppressants, C_(2)HF_(5) (HFC-125) and C_(2)HF_(7) (HFC-227), is presented and compared with CF_(3)Br performance. For these analyses, a systematic analytical methodology was used to examine the effect of fire suppressants on ignition and laminar flame propagation of C_(1)-C_(3) alkanes premixed mixtures, as good representatives of flammable gas fires (Class B fires). This methodology integrates model formulations and experimental designs in order to examine both chemical kinetics and thermal effects on fire suppressants at different stoichiometric conditions. Modeling predictions were based on a detailed chemical kinetics mechanism which was assembled from a new, well-studied H_(2), C_(0)–C_(5) hydrocarbon mechanism from NUI Galway and recent CF_(3)Br and HFC fire suppressant chemistry from NIST. Experimental study involved the use of a shock tube (for ignition analysis) and a freely expanding flame speed bomb (for laminar flame speed analysis). Most of the experimental data provided in this work are the first measurements of their kind for the compounds and mixtures explored in this thesis. These measurements are extremely valuable since they can be used as a metric for model validation which represents one of the objectives of this work.
Current analyses indicate that the combustion properties of halogenated compounds cannot be generalized and depends on different factors. On one hand, the presented results showed that all the tested fire suppressants can decrease the laminar flame speed of the examined C_(1)-C_(3)alkanes premixed flames; however, in some cases they can act as ignition promoters. In order to understand these behaviors, sensitivity analyses were conducted showing that halogenated species, resulting from the fire suppressants decomposition, can participate in both promoting and inhibiting reactions that compete to give a net effect. Identification of the key reaction responsible for such effects was conducted. Then, improvements on the fire suppressant chemistry can be done by modifying the corresponding Arrhenius parameters of such important reactions. This work not only provides fundamental knowledge of halogenated flame inhibition mechanisms, but also serves as the basis for more accurate chemical kinetics mechanisms that can be used for better predictions over a wide range of conditions.
|
249 |
伸長・回転流れにおける圧力変化と火炎特性山本, 和弘, YAMAMOTO, Kazuhiro, 石塚, 悟, ISHIZUKA, Satoru 25 November 1997 (has links)
No description available.
|
250 |
乱流予混合火炎の燃焼診断に対するアセトン-OH同時PLIF計測手法の有効性の検討馬目, 聡, MANOME, Satoshi, 中村, 祐二, NAKAMURA, Yuji, 林, 直樹, HAYASHI, Naoki, 山本, 和弘, YAMAMOTO, Kazuhiro, 山下, 博史, YAMASHITA, Hiroshi 25 January 2007 (has links)
No description available.
|
Page generated in 0.0253 seconds