• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 30
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

External and Internal Mass Transfer in Biological Wastewater Treatment Systems`

Gapes, Daniel James Unknown Date (has links)
A detailed study has been carried out to demonstrate the importance of external and internal mass transfer on the nitrification rates in three distinct treatment processes: flocculent and granular activated sludge, and suspended carrier reactor (SCR) systems. The major emphasis was on external mass transfer, and the impact of system hydrodynamics on this mechanism. Laboratory-scale flocculent and granular sequencing batch reactors were operated for the nitrification of a synthetic wastewater. A two-stage, continuous, nitrifying SCR was operated using the same wastewater feed. Within each stage, biofilm was grown on two types of commercial carriers- the Natrix C10/10 from ANOX AB (Sweden); and the K1 carrier from Kaldnes Miljøteknologi (Norway). Biofilm carriers obtained from each of these reactors was utilised for the mass transfer investigations. The major findings, and contributions of the work to the field of biological wastewater treatment, are described in the following paragraphs. In order to complete the work, a novel experimental tool, the TOGA (Titrimetric and Off-Gas Analysis) sensor was created, which utilises off-gas mass balancing, coupled with pH titration to provide detailed measurement of biological reaction rates. An original method for off-gas mass balancing was developed, within a reactor that allowed modification of the hydrodynamic conditions using gas phase mixing independent of dissolved oxygen control within the liquid phase. This sensor has already proven to be a highly effective tool not only for the measurement of oxygen but also for carbon dioxide and various nitrogen species, and has application for numerous other compounds present in the gas phase of biological reactors (e.g. hydrogen, methane). The application of the TOGA sensor signals to the nitrification process was demonstrated, which enabled the online measurement of oxygen, ammonia, and nitrite reaction rates. The TOGA sensor development underpinned the majority of the subsequent experimental work within this thesis. Dissolved oxygen microelectrodes were also used, enabling microscale measurements to be made in conjunction with the macroscale TOGA sensor analyses. Combined with size and microbiological analyses a detailed study of mass transfer and reaction was able to be carried out on the various systems. For suspended aggregate systems (flocs and granules): A spherical particle model was developed and used to predict the potential for external mass transfer limitation in flocs and granules. The significance of this limitation was confirmed experimentally, by observing changes in reaction rate or concentration boundary layer (in the TOGA sensor or microelectrode study, respectively) upon modification of the system’s flow conditions. Despite this flow effect being small, and only observable under low bulk liquid substrate concentrations, the external mass transfer limitation was concluded to be significant for biological flocs and granules even at higher substrate concentrations. As particle size and the maximum volumetric reaction rate of the biomass increases, external mass transfer effects become increasingly significant. The work highlights the impact of mass transfer limitation on the measurement of Monod half saturation coefficients (KS) in flocs and granules. Without accounting for external or internal mass transfer limitation, KS is seriously overestimated and becomes a lumped parameter, reflecting not only the microbial response but also the mass transfer limitations observed within the system under study. To avoid confusion or generation of erroneous results, care should be taken in defining, measuring and utilising the half saturation coefficient in biological systems where the biomass is not present as individual cells or extremely small flocs. For Suspended Carrier Reactor systems: External and internal mass transfer are both concluded to be important rate limiting steps within suspended carrier reactors. The demonstration of a significant impact of fluid flow conditions on the nitrification rates highlights the impact of external mass transfer limitation within these systems. Application of a one-dimensional biofilm model to the experimental results led to the conclusion that there is little difference between the external mass transfer limitation of the two different carrier types, for carriers grown under the same environmental conditions. However, there was a significantly higher areal nitrification rate observed on the Natrix carriers compared to the Kaldnes carriers. It is the biofilm structure that is critically important in characterising the mass transfer steps. Systems operated under high nitrogen loads, producing filamentous biofilms on the carrier surface, were found to have larger external mass transfer coefficients and responses to changes in fluid flow than those carriers which were operated under nitrogen-limited conditions (producing a flatter, more gel-like biofilm). The structure of the biofilm colonising the carrier surface was far more important in defining the mass transfer coefficient than the actual carrier type used. In a remarkably similar trend to that of the external mass transfer coefficient, the biofilm morphology was again significantly more important than carrier type in determining both the magnitude and response to fluid flow of the gas-liquid mass transfer coefficient for oxygen (kLa) calculated within the laboratory TOGA sensor. These findings led to the postulation that direct gas-biofilm interfacial mass transfer mechanism is occurring within the SCR systems. This hypothesis is an alternative to the standard mechanism of gas transfer from the bubble into the liquid phase, and then into the biofilm. Understanding of interfacial transfer is likely to be important for developing the knowledge of SCR processes. Overall, both external and internal mass transfer phenomena have been demonstrated to create important rate limitations to suspended aggregate systems (flocs and granules) and biofilms grown in suspended carrier reactors. This significantly advances the conceptual understanding of these biological treatment processes.
22

External and Internal Mass Transfer in Biological Wastewater Treatment Systems`

Gapes, Daniel James Unknown Date (has links)
A detailed study has been carried out to demonstrate the importance of external and internal mass transfer on the nitrification rates in three distinct treatment processes: flocculent and granular activated sludge, and suspended carrier reactor (SCR) systems. The major emphasis was on external mass transfer, and the impact of system hydrodynamics on this mechanism. Laboratory-scale flocculent and granular sequencing batch reactors were operated for the nitrification of a synthetic wastewater. A two-stage, continuous, nitrifying SCR was operated using the same wastewater feed. Within each stage, biofilm was grown on two types of commercial carriers- the Natrix C10/10 from ANOX AB (Sweden); and the K1 carrier from Kaldnes Miljøteknologi (Norway). Biofilm carriers obtained from each of these reactors was utilised for the mass transfer investigations. The major findings, and contributions of the work to the field of biological wastewater treatment, are described in the following paragraphs. In order to complete the work, a novel experimental tool, the TOGA (Titrimetric and Off-Gas Analysis) sensor was created, which utilises off-gas mass balancing, coupled with pH titration to provide detailed measurement of biological reaction rates. An original method for off-gas mass balancing was developed, within a reactor that allowed modification of the hydrodynamic conditions using gas phase mixing independent of dissolved oxygen control within the liquid phase. This sensor has already proven to be a highly effective tool not only for the measurement of oxygen but also for carbon dioxide and various nitrogen species, and has application for numerous other compounds present in the gas phase of biological reactors (e.g. hydrogen, methane). The application of the TOGA sensor signals to the nitrification process was demonstrated, which enabled the online measurement of oxygen, ammonia, and nitrite reaction rates. The TOGA sensor development underpinned the majority of the subsequent experimental work within this thesis. Dissolved oxygen microelectrodes were also used, enabling microscale measurements to be made in conjunction with the macroscale TOGA sensor analyses. Combined with size and microbiological analyses a detailed study of mass transfer and reaction was able to be carried out on the various systems. For suspended aggregate systems (flocs and granules): A spherical particle model was developed and used to predict the potential for external mass transfer limitation in flocs and granules. The significance of this limitation was confirmed experimentally, by observing changes in reaction rate or concentration boundary layer (in the TOGA sensor or microelectrode study, respectively) upon modification of the system’s flow conditions. Despite this flow effect being small, and only observable under low bulk liquid substrate concentrations, the external mass transfer limitation was concluded to be significant for biological flocs and granules even at higher substrate concentrations. As particle size and the maximum volumetric reaction rate of the biomass increases, external mass transfer effects become increasingly significant. The work highlights the impact of mass transfer limitation on the measurement of Monod half saturation coefficients (KS) in flocs and granules. Without accounting for external or internal mass transfer limitation, KS is seriously overestimated and becomes a lumped parameter, reflecting not only the microbial response but also the mass transfer limitations observed within the system under study. To avoid confusion or generation of erroneous results, care should be taken in defining, measuring and utilising the half saturation coefficient in biological systems where the biomass is not present as individual cells or extremely small flocs. For Suspended Carrier Reactor systems: External and internal mass transfer are both concluded to be important rate limiting steps within suspended carrier reactors. The demonstration of a significant impact of fluid flow conditions on the nitrification rates highlights the impact of external mass transfer limitation within these systems. Application of a one-dimensional biofilm model to the experimental results led to the conclusion that there is little difference between the external mass transfer limitation of the two different carrier types, for carriers grown under the same environmental conditions. However, there was a significantly higher areal nitrification rate observed on the Natrix carriers compared to the Kaldnes carriers. It is the biofilm structure that is critically important in characterising the mass transfer steps. Systems operated under high nitrogen loads, producing filamentous biofilms on the carrier surface, were found to have larger external mass transfer coefficients and responses to changes in fluid flow than those carriers which were operated under nitrogen-limited conditions (producing a flatter, more gel-like biofilm). The structure of the biofilm colonising the carrier surface was far more important in defining the mass transfer coefficient than the actual carrier type used. In a remarkably similar trend to that of the external mass transfer coefficient, the biofilm morphology was again significantly more important than carrier type in determining both the magnitude and response to fluid flow of the gas-liquid mass transfer coefficient for oxygen (kLa) calculated within the laboratory TOGA sensor. These findings led to the postulation that direct gas-biofilm interfacial mass transfer mechanism is occurring within the SCR systems. This hypothesis is an alternative to the standard mechanism of gas transfer from the bubble into the liquid phase, and then into the biofilm. Understanding of interfacial transfer is likely to be important for developing the knowledge of SCR processes. Overall, both external and internal mass transfer phenomena have been demonstrated to create important rate limitations to suspended aggregate systems (flocs and granules) and biofilms grown in suspended carrier reactors. This significantly advances the conceptual understanding of these biological treatment processes.
23

Influ?ncia da intensidade de aera??o na forma??o do floco de lodo ativado e na efici?ncia de remo??o de mat?ria org?nica / Influence of the aeration intensity on the formation of activated sludge floc and efficiency of organic matter removal

Oliveira, Pedro Henrique da Silva 24 July 2014 (has links)
Made available in DSpace on 2014-12-17T15:01:35Z (GMT). No. of bitstreams: 1 PedroHSO_DISSERT.pdf: 2680953 bytes, checksum: 2a5742ac4e3d4679d06b09232988727f (MD5) Previous issue date: 2014-07-24 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In wastewater treatment, activated sludge systems have been a technology widely applied as secondary treatment. During this step, which has a strong biological aspect, it is necessary to introduce oxygen supply for the maintenance of metabolic activity of the bacteria through the aerators. Aeration devices are responsible for most of the energy consumption in this stage. In this background, the influence of three aeration intensities (atmospheric air flow 3.5, 7.0 and 10.5 L.min-1) and the concentration of dissolved oxygen (DO) on the dimension of activated sludge flocs as well as on the efficiency of organic matter removal were assessed using a traditional activated sludge system which was fed with synthetic domestic wastewater. Samples were taken weekly from the three units that make up the system feed, aeration and storage tank in order to verify the Chemical Oxygen Demand (COD). It was established the process efficiency through a comparison between the initial and final COD. Besides the parameters already mentioned, this monitoring work on activated sludge batch system was also observed by Mixed Liquor Suspend Solids (MLSS), Volatile Suspend Solids (VSS), pH and temperature measures. The results have showed a maximum removal efficiency around 75% in the first aeration sequence and approximately 85% for the second and third one. For the first aeration, the DO concentration remained higher than 3.0 mg.L-1 and a diameter range from 10 to 60 μm was observed. In the second e third sequence, the DO concentration remained higher than 4.0 mg.L-1 with a diameter range of 10 until 200 μm. Although the sequence 1 and 2 have presented similar performances for organic matter removal, the sequence 2 promoted a regular floc size distribution and with lower values of Sludge Volumetric Index (SVI) meaning a better flocculating ability. In addition, the results reaffirmed what the literature has reported: higher DO concentrations produce flocs with greater dimensions / No tratamento de ?guas residu?rias, os sistemas de lodos ativados t?m sido uma tecnologia largamente aplicada como tratamento secund?rio. Durante essa etapa, a qual possui uma caracter?stica fortemente biol?gica, ? necess?rio o fornecimento de oxig?nio para a manuten??o da atividade metab?lica das bact?rias atrav?s de aeradores. Os dispositivos de aera??o s?o respons?veis pela maior parte do consumo de energia ao longo dessa fase. Nesse contexto, a influ?ncia de tr?s intensidades de aera??o (vaz?o de ar atmosf?rico de 3,5, 7,0 e 10, 5 L.min-1) e a concentra??o de oxig?nio dissolvido (OD) sobre a dimens?o de flocos de lodo ativado, e bem como sobre a efici?ncia de remo??o foram avaliadas utilizando um sistema tradicional de lodos ativados alimentado com efluente dom?stico sint?tico. Amostras foram retiradas semanalmente das tr?s unidades que compunham o sistema tanque de alimenta??o, de aera??o e de armazenamento para verificar a Demanda Qu?mica de Oxig?nio (DQO). A efici?ncia do processo foi estabelecida atrav?s da compara??o entre a DQO inicial e final. Al?m dos par?metros j? mencionados, este trabalho de monitoramento do sistema de lodos ativados de bancada foi observado tamb?m por meio de medi??es de S?lidos em Suspens?o Totais (SST) e Vol?teis (SSV), pH e temperatura. Os resultados mostraram uma efici?ncia m?xima de remo??o de quase 75% na primeira sequ?ncia de aera??o e aproximadamente 85% para a segunda e terceira sequ?ncias. Para a primeira aera??o, a concentra??o de OD manteve-se maior que 3,0 mg.L-1 e uma faixa de di?metro de 10 a 60 μm foi observada, enquanto que na segunda e terceira sequ?ncia, a concentra??o de OD permaneceu superior a 4,0 mg.L-1 com uma faixa de di?metro de 10 a 200 μm. Embora a sequ?ncia 2 e 3 tenham apresentado, ambas, desempenhos similares para remo??o de mat?ria org?nica, a sequ?ncia 3 promoveu uma distribui??o de tamanho de flocos mais regular e com baixos valores de ?ndices Volum?tricos do Lodo (IVL), configurando em uma melhor habilidade de sedimenta??o. Em adi??o, os resultados reafirmam o que literatura tem relatado, maiores concentra??es de OD produzem flocos com maiores dimens?es
24

Optical monitoring of flocs and filaments in the activated sludge process

Koivuranta, E. (Elisa) 10 May 2016 (has links)
Abstract Flocculation plays a critical role in the activated sludge process, where flocs are removed by settling and where unsatisfactory flocculation is resulting in poor effluent quality. Control and operation of the process is also challenging as it is sensitive to external and internal disturbances. Furthermore, stricter environmental demands are also being placed on wastewater treatment and discharge quality thus solutions are needed to improve the current systems. A novel optical monitoring method employing a tube flow and a CCD camera was developed to characterize the flocs and filaments of the sludge, and the method was tested on samples from full-scale activated sludge plants. An online device operating on the same principle was also developed and this was tested over a period of eight months at municipal wastewater treatment plant. Optical monitoring was employed in the laboratory to study the breakage of activated sludge flocs. Based on the image analysis data, in the industrial plant the major breakage process was large-scale fragmentation. In the two municipal plants, it was surface erosion. The flocs had more filaments and were more irregular in shape in the industrial plant, which could be the reason for the large-scale fragmentation. The effect of floc morphology on the effluent clarity of the activated sludge process was studied in the industrial and municipal activated sludge plants by optical monitoring over periods of three months and eight months, respectively. The changes in floc morphology took place slowly in both plants. Four major factors that correlated with the purification results were the size and shape of the flocs and the quantities of small particles and filaments. The image analysis results suggested that the settling problem that occurred during the test periods in the industrial plant was caused by dispersed growth, whereas that in the municipal plant was caused by filamentous bulking. In conclusion, it is possible to use the developed method online in order to analyse the state of flocculation. Thus the method could be useful when developing online monitoring applications for quantifying floc characteristics and for diagnosing the causes of settling problems in the wastewater treatment plants. / Tiivistelmä Aktiivilieteprosessissa flokkulaatiolla on merkittävä rooli, sillä muodostuneet flokit poistetaan prosessista laskeutuksen avulla. Siten huono flokkulaatio johtaa puhdistetun jäteveden kiintoainemäärän lisääntymiseen. Prosessin säätö ja operointi on kuitenkin hankalaa, sillä aktiivilieteprosessi on herkkä ulkoisille ja sisäisille häiriöille. Jätevedenpuhdistukseen liittyvät ympäristövaatimukset ja päästöehdot vesistöihin ovat myös tiukentuneet, joten uusia menetelmiä tarvitaan parantamaan nykyisiä prosesseja. Tässä työssä kehitettiin uusi, optinen kuvantamismenetelmä karakterisoimaan flokkeja ja rihmoja. Menetelmä hyödyntää putkivirtausta ja CCD-kameraa ja sitä testattiin aktiivilietelaitosten näytteillä. Lisäksi kehitettiin samaa periaatetta noudattava online-laitteisto, jota testattiin kahdeksan kuukauden ajan. Optista kuvantamista testattiin laboratoriossa flokkien hajoamistutkimuksessa. Kuva-analyysitulosten perusteella kahden kunnallisen aktiivilietelaitoksen flokit hajosivat pintaeroosioon perustuvan mallin mukaan ja teollisen aktiivilietelaitoksen flokit hajosivat fragmentaatiomallin mukaan. Teollisen aktiivilietelaitoksen flokeissa oli enemmän rihmoja ja ne olivat epäsäännöllisemmän muotoisia, mikä voi olla syynä flokkien fragmentaatioon. Flokkien morfologian vaikutus jäteveden puhdistustuloksiin tutkittiin teollisessa (kolmen kuukauden ajan) ja kunnallisessa (kahdeksan kuukauden ajan) aktiivilietelaitoksessa optisella kuvantamismenetelmällä. Molemmissa laitoksessa muutokset flokkien morfologiassa tapahtuivat hitaasti. Neljä tärkeintä tekijää, jotka korreloivat puhdistustulosten kanssa, olivat flokkien koko ja muoto sekä pienten partikkelien ja rihmojen määrä. Kuva-analyysitulosten perusteella laskeutumisongelma teollisessa jätevesilaitoksessa johtui flokinmuodostajabakteerien liian pienestä määrästä ja kunnallisessa jätevesilaitoksessa rihmamaisten bakteerien liikakasvusta. Yhteenvetona voidaan todeta, että kehitettyä menetelmää on mahdollista käyttää online-mittarina sekä sen avulla voidaan arvioida flokkulaation tilannetta. Siten menetelmää on mahdollista hyödyntää flokkien ominaisuuksien karakterisoinnissa ja arvioidessa jätevedenkäsittelylaitoksen laskeutumisongelmien aiheuttajaa.
25

Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat / Theory and applications of polyphasic dispersed systems to chemostat cellular cultures

Thierie, Jacques 05 September 2005 (has links)
Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple).<p><p>Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts.<p><p>La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. <p><p>La démarche s’est faite en deux temps :<p>·\ / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
26

Avaliação da influência da distribuição de tamanho de partículas e do binômio velocidade/tempo de detenção na zona de reação no desempenho da flotação com emprego de sonda ultra-sônica e de técnica de análise por imagem / Analysis of particles distribution size and the pair velocity/hydraulic residence time in the reaction zone performance of a flotation unit by using ultrasonic probe and image analysis

Moruzzi, Rodrigo Braga 24 June 2005 (has links)
O desempenho de uma unidade de flotação por ar dissolvido (FAD) em escala piloto, tratando água destinada ao abastecimento contendo 50 uC e 05 uT, foi investigada sob o ponto de vista das partículas presentes (micro-bolhas e flocos) e da hidrodinâmica. A análise centrou-se na zona de reação da unidade de FAD onde foi desenvolvido o modelo matemático proposto por Reali (1991). A determinação das partículas foi realizada por método que emprega a análise de imagem. A condição hidrodinâmica foi avaliada por meio de ensaios de estímulo e resposta, combinada com a análise tridimensional do escoamento feita através de mapeamento utilizando equipamento que emprega ultra-som (sonda micro-ADV). Para a consecução do trabalho foram desenvolvidos dois métodos. Um para aquisição, tratamento e obtenção da distribuição de tamanho de micro-bolhas e flocos utilizando a análise de imagem digital em instalação com escoamento contínuo, sem a extração de amostras. Outro, envolvendo o desenvolvimento de programa (VelDigital3D) para tratamento dos dados da sonda utilizada. Inicialmente, foram realizados os ensaios de validação da utilização da sonda micro-ADV em água contendo micro-bolhas de ar e os ensaios de mapeamento da unidade utilizando a referida sonda conjugada ao programa VelDigital3D. Posteriormente, foram investigados alguns possíveis agentes na aglutinação das micro-bolhas após a despressurização tais como: i) as condições de mistura expressas em termos da taxa de aplicação superficial (TAS) e tempo de detenção na zona de reação (Tdz.r), ii) razão de recirculação (p), iii) a variação de pH e, iv) a dosagem de coagulante (\'AL POT.+3\'). Finalmente, a sensibilidade do modelo matemático proposto por Reali (1991) para a zona de reação de unidades de FAD convencional foi verificada com base nos parâmetros de projeto: tempo de detenção da zona de reação (Tdz.r) e taxa de aplicação superficial na zona de clarificação TASap. (downflow); e com base nos parâmetros operacionais: distribuição de tamanho de partículas (micro-bolhas e flocos) e razão de recirculação (p). As principais conclusões foram: i) a sonda micro-ADV pode ser utilizada para obtenção do perfil de velocidade em águas contendo micro-bolhas de ar, nas vazões investigadas; ii) o escoamento no interior da zona de reação apresentou um padrão bem definido de recirculação ao longo da altura, confirmando os resultados obtidos com os ensaios estímulo e resposta; iii) a variação do diâmetro médio das micro-bolhas foi muito pequena (de 20 a 30 \'mü\'m), embora tenha havido ressalvas e iv) o modelo proposto por Reali (1991) foi sensível aos parâmetros investigados e responde coerentemente com o desempenho da unidade piloto de FAD. / This work investigated the performance of a dissolved air flotation (DAF) pilot plant, used to treat drinking water containing 05 Tu and 50 Cu. The particles (micro-bubbles and flocs) and hydraulic characteristics were taken into account. The focus was given in the reaction zone as hypothesized by Reali\'s mathematic model (REALI, 1991). An image analyses was used to assess particles distribution sizes. The hydraulics of the DAF tank was assessed by using a pulse stimulus-response test combined with the three-dimensional flow analyses carried-out with equipment that applied ultra sound (microADV). Therefore, two methods were developed; one for the acquisition, treatment and also to obtain the micro-bubbles and flocs sizes distribution, without the need of extracting samples and another, involved the development of a software (VelDigital3D) in order to treat the microADV data. Initially, the application of the microADV in the DAF process was evaluated. After, the data collection was made and the result was treated by using the VelDigital3D software. Sequentially, the effects of some agents for micro-bubbles coalescence after the releasing point were investigated: i) mixture conditions in terms of hydraulic loading rate (HLR) and detention time (DT); ii) recirculation rate (p); iii) pH variation and, iv) coagulant dosage (\'AL POT.+3\'). Finally, the mathematic model behavior proposed by Reali (1991) was investigated by varying some parameters in the design, such as: detention time in the reaction zone (DTr.z) and hydraulic loading rate in the clarification zone HLRc.z (dowflow); and by varying some operational parameters, such as: particles sizes distribution (micro-bubbles and flocs) and recirculation rate (p). The main conclusions were: i) the microADV probe can be used to obtain the velocity flow profile in water containing micro-bubbles; ii) the flow within the reaction zone showed a well defined pattern of recirculation throughout the height of the unit, confirming the obtained results by using the stimulus-response tests; iii) the variation of micro-bubbles medium size was low (from 20 to 30 \'mü\'m) but some points regarding this aspect were discussed and, iv) the behavior of the mathematical model proposed by Reali (1991) showed a significant adjustment to the experimental data proving that it can be applied to analyzed design parameters.
27

The Effect of Physicochemical Properties of Secondary Treated Wastewater Flocs on UV Disinfection

Azimi, Yaldah 05 March 2014 (has links)
The microbial aggregates (flocs) formed during secondary biological treatment of wastewater shield microbes from exposure to ultraviolet (UV) light, and decrease the efficiency of disinfection, causing the tailing phenomena. This thesis investigates whether the formation of compact cores within flocs induces higher levels of UV resistance. Moreover, it investigates the effect of secondary treatment conditions on the physicochemical properties of flocs’, effluent quality, and UV disinfection performance. Compact cores were isolated from the flocs using hydrodynamic shearing. The UV dose response curves (DRC) were constructed for flocs and cores, and the 53-63 μm cores showed 0.5 log less disinfectability, compared to flocs of similar size. Based on a structural model developed for the UV disinfection of flocs, floc disinfection kinetics was sensitive to the core’s relative volume, their density, and viability. The UV disinfection and floc properties of a conventional activated sludge (CAS) system, and a biological nutrient removal (BNR-UCT) system, including both biological nitrogen and phosphorus removal, was compared. The 32-53 μm flocs and the final effluent from the BNR-UCT reactor showed 0.5 log and 1 log improvement in UV disinfectability, respectively, compared to those from the CAS reactor. The BNR-UCT flocs were more irregular in structure, and accumulated polyphosphates through enhanced biological phosphorus removal. Polyphosphates were found to be capable of producing hydroxyl radicals under UV irradiation, causing the photoreactive disinfection of microorganisms embedded within the BNR-UCT flocs, accelerating their UV disinfection. Comparing the UV disinfection performance and floc properties at various operating conditions showed that increasing the operating temperature from 12 ºC to 22 ºC, improved the UV disinfection of effluent by 0.5 log. P-Starved condition, i.e. COD:N:P of 100:10:0.03, decreased the average floc size and sphericity, both by 50%. Despite the higher effluent turbidity of the P-Starved reactor, the final effluent’s UV disinfection improved by at least 1 log compared to the P-Normal and P-Limited conditions. The improvement in the floc and effluent disinfectability were accompanied by a decrease in floc sphericity and a decrease in the number of larger flocs in the effluent, respectively.
28

The Effect of Physicochemical Properties of Secondary Treated Wastewater Flocs on UV Disinfection

Azimi, Yaldah 05 March 2014 (has links)
The microbial aggregates (flocs) formed during secondary biological treatment of wastewater shield microbes from exposure to ultraviolet (UV) light, and decrease the efficiency of disinfection, causing the tailing phenomena. This thesis investigates whether the formation of compact cores within flocs induces higher levels of UV resistance. Moreover, it investigates the effect of secondary treatment conditions on the physicochemical properties of flocs’, effluent quality, and UV disinfection performance. Compact cores were isolated from the flocs using hydrodynamic shearing. The UV dose response curves (DRC) were constructed for flocs and cores, and the 53-63 μm cores showed 0.5 log less disinfectability, compared to flocs of similar size. Based on a structural model developed for the UV disinfection of flocs, floc disinfection kinetics was sensitive to the core’s relative volume, their density, and viability. The UV disinfection and floc properties of a conventional activated sludge (CAS) system, and a biological nutrient removal (BNR-UCT) system, including both biological nitrogen and phosphorus removal, was compared. The 32-53 μm flocs and the final effluent from the BNR-UCT reactor showed 0.5 log and 1 log improvement in UV disinfectability, respectively, compared to those from the CAS reactor. The BNR-UCT flocs were more irregular in structure, and accumulated polyphosphates through enhanced biological phosphorus removal. Polyphosphates were found to be capable of producing hydroxyl radicals under UV irradiation, causing the photoreactive disinfection of microorganisms embedded within the BNR-UCT flocs, accelerating their UV disinfection. Comparing the UV disinfection performance and floc properties at various operating conditions showed that increasing the operating temperature from 12 ºC to 22 ºC, improved the UV disinfection of effluent by 0.5 log. P-Starved condition, i.e. COD:N:P of 100:10:0.03, decreased the average floc size and sphericity, both by 50%. Despite the higher effluent turbidity of the P-Starved reactor, the final effluent’s UV disinfection improved by at least 1 log compared to the P-Normal and P-Limited conditions. The improvement in the floc and effluent disinfectability were accompanied by a decrease in floc sphericity and a decrease in the number of larger flocs in the effluent, respectively.
29

Avaliação da influência da distribuição de tamanho de partículas e do binômio velocidade/tempo de detenção na zona de reação no desempenho da flotação com emprego de sonda ultra-sônica e de técnica de análise por imagem / Analysis of particles distribution size and the pair velocity/hydraulic residence time in the reaction zone performance of a flotation unit by using ultrasonic probe and image analysis

Rodrigo Braga Moruzzi 24 June 2005 (has links)
O desempenho de uma unidade de flotação por ar dissolvido (FAD) em escala piloto, tratando água destinada ao abastecimento contendo 50 uC e 05 uT, foi investigada sob o ponto de vista das partículas presentes (micro-bolhas e flocos) e da hidrodinâmica. A análise centrou-se na zona de reação da unidade de FAD onde foi desenvolvido o modelo matemático proposto por Reali (1991). A determinação das partículas foi realizada por método que emprega a análise de imagem. A condição hidrodinâmica foi avaliada por meio de ensaios de estímulo e resposta, combinada com a análise tridimensional do escoamento feita através de mapeamento utilizando equipamento que emprega ultra-som (sonda micro-ADV). Para a consecução do trabalho foram desenvolvidos dois métodos. Um para aquisição, tratamento e obtenção da distribuição de tamanho de micro-bolhas e flocos utilizando a análise de imagem digital em instalação com escoamento contínuo, sem a extração de amostras. Outro, envolvendo o desenvolvimento de programa (VelDigital3D) para tratamento dos dados da sonda utilizada. Inicialmente, foram realizados os ensaios de validação da utilização da sonda micro-ADV em água contendo micro-bolhas de ar e os ensaios de mapeamento da unidade utilizando a referida sonda conjugada ao programa VelDigital3D. Posteriormente, foram investigados alguns possíveis agentes na aglutinação das micro-bolhas após a despressurização tais como: i) as condições de mistura expressas em termos da taxa de aplicação superficial (TAS) e tempo de detenção na zona de reação (Tdz.r), ii) razão de recirculação (p), iii) a variação de pH e, iv) a dosagem de coagulante (\'AL POT.+3\'). Finalmente, a sensibilidade do modelo matemático proposto por Reali (1991) para a zona de reação de unidades de FAD convencional foi verificada com base nos parâmetros de projeto: tempo de detenção da zona de reação (Tdz.r) e taxa de aplicação superficial na zona de clarificação TASap. (downflow); e com base nos parâmetros operacionais: distribuição de tamanho de partículas (micro-bolhas e flocos) e razão de recirculação (p). As principais conclusões foram: i) a sonda micro-ADV pode ser utilizada para obtenção do perfil de velocidade em águas contendo micro-bolhas de ar, nas vazões investigadas; ii) o escoamento no interior da zona de reação apresentou um padrão bem definido de recirculação ao longo da altura, confirmando os resultados obtidos com os ensaios estímulo e resposta; iii) a variação do diâmetro médio das micro-bolhas foi muito pequena (de 20 a 30 \'mü\'m), embora tenha havido ressalvas e iv) o modelo proposto por Reali (1991) foi sensível aos parâmetros investigados e responde coerentemente com o desempenho da unidade piloto de FAD. / This work investigated the performance of a dissolved air flotation (DAF) pilot plant, used to treat drinking water containing 05 Tu and 50 Cu. The particles (micro-bubbles and flocs) and hydraulic characteristics were taken into account. The focus was given in the reaction zone as hypothesized by Reali\'s mathematic model (REALI, 1991). An image analyses was used to assess particles distribution sizes. The hydraulics of the DAF tank was assessed by using a pulse stimulus-response test combined with the three-dimensional flow analyses carried-out with equipment that applied ultra sound (microADV). Therefore, two methods were developed; one for the acquisition, treatment and also to obtain the micro-bubbles and flocs sizes distribution, without the need of extracting samples and another, involved the development of a software (VelDigital3D) in order to treat the microADV data. Initially, the application of the microADV in the DAF process was evaluated. After, the data collection was made and the result was treated by using the VelDigital3D software. Sequentially, the effects of some agents for micro-bubbles coalescence after the releasing point were investigated: i) mixture conditions in terms of hydraulic loading rate (HLR) and detention time (DT); ii) recirculation rate (p); iii) pH variation and, iv) coagulant dosage (\'AL POT.+3\'). Finally, the mathematic model behavior proposed by Reali (1991) was investigated by varying some parameters in the design, such as: detention time in the reaction zone (DTr.z) and hydraulic loading rate in the clarification zone HLRc.z (dowflow); and by varying some operational parameters, such as: particles sizes distribution (micro-bubbles and flocs) and recirculation rate (p). The main conclusions were: i) the microADV probe can be used to obtain the velocity flow profile in water containing micro-bubbles; ii) the flow within the reaction zone showed a well defined pattern of recirculation throughout the height of the unit, confirming the obtained results by using the stimulus-response tests; iii) the variation of micro-bubbles medium size was low (from 20 to 30 \'mü\'m) but some points regarding this aspect were discussed and, iv) the behavior of the mathematical model proposed by Reali (1991) showed a significant adjustment to the experimental data proving that it can be applied to analyzed design parameters.
30

Drinking water treatment sludge production and dewaterabilityф

Verrelli, D. I. January 2008 (has links)
The provision of clean drinking water typically involves treatment processes to remove contaminants. The conventional process involves coagulation with hydrolysing metal salts, typically of aluminium (‘alum’) or trivalent iron (‘ferric’). Along with the product water this also produces a waste by-product, or sludge. The fact of increasing sludge production — due to higher levels of treatment and greater volume of water supply — conflicts with modern demands for environmental best practice, leading to higher financial costs. A further issue is the significant quantity of water that is held up in the sludge, and wasted. / One means of dealing with these problems is to dewater the sludge further. This reduces the volume of waste to be disposed of. The consistency is also improved (e.g. for the purpose of landfilling). And a significant amount of water can be recovered. The efficiency, and efficacy, of this process depends on the dewaterability of the sludge.In fact, good dewaterability is vital to the operation of conventional drinking water treatment plants (WTP’s). The usual process of separating the particulates, formed from a blend of contaminants and coagulated precipitate, relies on ‘clarification’ and ‘thickening’, which are essentially settling operations of solid–liquid separation.WTP operators — and researchers — do attempt to measure sludge dewaterability, but usually rely on empirical characterisation techniques that do not tell the full story and can even mislead. Understanding of the physical and chemical nature of the sludge is also surprisingly rudimentary, considering the long history of these processes. / The present work begins by reviewing the current state of knowledge on raw water and sludge composition, with special focus on solid aluminium and iron phases and on fractal aggregate structure. Next the theory of dewatering is examined, with the adopted phenomenological theory contrasted with empirical techniques and other theories.The foundation for subsequent analyses is laid by experimental work which establishes the solid phase density of WTP sludges. Additionally, alum sludges are found to contain pseudoböhmite, while 2-line ferrihydrite and goethite are identified in ferric sludges. / A key hypothesis is that dewaterability is partly determined by the treatment conditions. To investigate this, numerous WTP sludges were studied that had been generated under diverse conditions: some plant samples were obtained, and the remainder were generated in the laboratory (results were consistent). Dewaterability was characterised for each sludge in concentration ranges relevant to settling, centrifugation and filtration using models developed by LANDMAN and WHITE inter alia; it is expressed in terms of both equilibrium and kinetic parameters, py(φ) and R(φ) respectively.This work confirmed that dewaterability is significantly influenced by treatment conditions.The strongest correlations were observed when varying coagulation pH and coagulant dose. At high doses precipitated coagulant controls the sludge behaviour, and dewaterability is poor. Dewaterability deteriorates as pH is increased for high-dose alum sludges; other sludges are less sensitive to pH. These findings can be linked to the faster coagulation dynamics prevailing at high coagulant and alkali dose.Alum and ferric sludges in general had comparable dewaterabilities, and the characteristics of a magnesium sludge were similar too.Small effects on dewaterability were observed in response to variations in raw water organic content and shearing. Polymer flocculation and conditioning appeared mainly to affect dewaterability at low sludge concentrations. Ageing did not produce clear changes in dewaterability.Dense, compact particles are known to dewater better than ‘fluffy’ aggregates or flocs usually encountered in drinking water treatment. This explains the superior dewaterability of a sludge containing powdered activated carbon (PAC). Even greater improvements were observed following a cycle of sludge freezing and thawing for a wide range of WTP sludges. / Further aspects considered in the present work include deviations from simplifying assumptions that are usually made. Specifically: investigation of long-time dewatering behaviour, wall effects, non-isotropic stresses, and reversibility of dewatering (or ‘elasticity’).Several other results and conclusions, of both theoretical and experimental nature, are presented on topics of subsidiary or peripheral interest that are nonetheless important for establishing a reliable basis for research in this area. / This work has proposed links between industrial drinking water coagulation conditions, sludge dewaterability from settling to filtration, and the microstructure of the aggregates making up that sludge. This information can be used when considering the operation or design of a WTP in order to optimise sludge dewaterability, within the constraints of producing drinking water of acceptable quality.

Page generated in 0.052 seconds