• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 14
  • 10
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 29
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
42

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
43

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
44

Supply Risk Management of Automotive Suppliers : Development in a Fluctuating Environment

Staudinger, Maximilian, Günl, Marius January 2012 (has links)
Background: The implementation of procurement concepts such as JIT or singlesourcing have resulted in the emergence of new supply risks forautomotive suppliers. The economic crisis in 2008 and volatiledemand in recent years had enormous impact on the sector.Consequently, in association with lean purchasing models, newdimensions of supply risks have emerged. This creates the need forautomotive suppliers to adapt and improve their supply riskmanagement in response to the increased risk potential. There hasbeen no research on how automotive suppliers have furtherdeveloped their supply risk management recently. Purpose: The purpose is to examine how automotive suppliers have adaptedtheir supply risk management in response to the fluctuatingeconomy since 2008. Frame of reference: In this section the Kraljic matrix and the risk management processare presented. The theories lead to a synthesis including the researchquestions for fulfilling the purpose. Method: This research is based on a qualitative multiple case study. In orderto gather the necessary in-depth data, four automotive suppliersfrom Germany and Northern Europe were interviewed by theauthors. Conclusions: Automotive suppliers have clearly reacted on increasedconsequences of supply risks. The general grown awareness andsensitivity have lead to the implementation of new managementtools. Particularly the cooperation between supply chain membershas considerably intensified and contributed to a better riskreduction. Moreover, the financial stability of vendors has risen inimportance and is considered more thoroughly. All the instrumentsand methods may, however, be more powerful and efficient ifautomotive suppliers had standardized and linked them into aconsecutive process.
45

Retosios ligos, jų fenomika ir genetinis konsultavimas / Rare diseases: phenomics and genetic counselling

Utkus, Algirdas 26 May 2009 (has links)
Retosios ligos (RL) – tai ypač mažai paplitusios ligos (gyvybei pavojų keliančios arba lėtai sekinančios ligos), kuriomis Europos Sąjungoje (ES) serga ne daugiau kaip 5 iš 10 000 asmenų. Pirmą kartą terminą „retosios ligos“ 1978 metais pavartojo Neilas A. Holtzmanas. Kiekviena RL ES serga apie 246 000 žmonių. Iš viso RL, kurių žinoma 5 000 – 8 000, kokiu nors gyvenimo etapu suserga apie 6% ES gyventojų ir tai yra 29 – 36 mln. ligonių. Lietuvoje sergančių RL galėtų būti apie 200 000 žmonių. Dauguma RL yra genetinės ligos (jos sudaro 80%), o likusios – kitų kategorijų retos vėžio formos, autoimuninės ligos, įgimtos raidos anomalijos, toksinės ir infekcinės ligos. Habilitacijos procedūrai teikiamų mokslo darbų apžvalgoje nagrinėtos 22 mokslinės publikacijos. Istoriniai šaltiniai apie RL gali būti anatominių preparatų muziejai, antikvarinės knygos medicinine tematika, tautosaka. Apžvalgoje nagrinėta Vilniaus universiteto Medicinos fakulteto anatominių preparatų kolekcija, kurioje nustatytas unikalus žmogaus anotocefalijos atvejis ir 11 kitų nozologinių RL (įgimtų anomalijų) vienetų. Pagrindinės priemonės žinioms apie RL turtinti ir klinikiniams moksliniams tyrimams plėtoti yra registrai ir duomenų bazės. Tai vienintelis būdas kaupti duomenis, kad būtų galima gauti pakankamo dydžio imtis epidemiologiniams ir (arba) klinikiniams tyrimams. Apžvalgoje nagrinėtos autopsijų ir Lietuvos paveldimų ligų ir įgimtų anomalijų (LIRECA) duomenų bazės, kurių analizės metu taikyti statistiniai... [toliau žr. visą tekstą] / Rare diseases (RD) – life menacing or slowly emaciating diseases of extremely low incidence (less than 5 cases in 10,000 EU inhabitants). The term was launched by Neil A. Holtzman in 1978. There are about 5,000 – 8,000 RD, each manifesting itself in some life stage of about 6% of EU population, that amounts from 29 to 36 million people. In Lithuania that would make about 200,000 people. The majority of RD are genetic (80%), the remaining consist of rare cancer forms, autoimmune diseases, inborn developmental anomalies, toxic or contagious illnesses. The author presented an analytical review of 22 publications on RD. Historical indications about RD could be found in anatomical museums, ancient medical books, and folk art. In the collection of anatomical specimens of Medical Faculty of Vilnius University the author has discovered a unique case of human anotocephaly and eleven more nosological entities of RD (congenital anomalies). The main sources for information on RD are registers and data bases. This is the only way to obtain sufficient samples for epidemiologic and/or clinical research. Lithuanian Register of Congenital Anomalies (LIRECA) and autopsies data base were reviewed by the author and analyzed by statistical research models applicable in registration of RD, in particular Poisson linear model and logistic (binomic) regression. Analysis of standardized remainders confirmed their adequacy and suitability. Biological asymmetry was evaluated by analysis of... [to full text]
46

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
47

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
48

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
49

Modelling and analysis of hydrogen-based wind energy transmission and storage systems : HyLink system at Totara Valley : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Energy Management at Massey University, Palmerston North, New Zealand

Sudol, Peter January 2009 (has links)
Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand’s electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines. A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support. This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited. The PEM electrolyser’s performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3%. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser’s efficiency. Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5 * 10[to the power of]-16 mol m m[to the power of]-2 s[to the power of]-1 Pa[to the power of]-1 for a 2 km MDPE pipe. This is about half the result obtained from previous studies on hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode. A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink. Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.
50

The effect of resource availability on community dynamics and properties in experimental microcosms

Li, Wei. January 2008 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Botany, 2008. / Title from second page of PDF document. Includes bibliographical references (p. 86-88).

Page generated in 0.0634 seconds