• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 37
  • 32
  • 17
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 419
  • 419
  • 96
  • 88
  • 82
  • 80
  • 61
  • 57
  • 55
  • 50
  • 44
  • 39
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Analise de sistemas multifasicos utilizando tomografia computadorizada gama monoenergetica e polienergetica / Monoenergetic and polyenergetic gamma ray computer tomography for multiphase systems analysis

SALVADOR, PABLO A.V. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:55:46Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:12Z (GMT). No. of bitstreams: 0 / A tecnologia de reatores multifásicos é o coração das transformações químicas de todos os processos industriais, concretamente 99% dos reatores trabalham com a presença de uma ou mais fases. A tomografia é uma técnica poderosa capaz de determinar o efeito de parâmetros operacionais e de desenho na distribuição do holdup das fases, visualizando sistemas opacos de uma forma não invasiva. Um tomógrafo computadorizado de fonte única (SSCT) com capacidade de gerar imagens para as distribuições de holdup em sistemas com duas fases dinâmicas foi desenvolvido e validado com sucesso no CTR/IPEN. Algoritmos para reconstrução de imagens analíticos e discretos ou iterativos (estatísticos) foram desenvolvidos e implementados para tais aplicações e depois comparados. O SSCT foi utilizado para determinar as distribuições de porosidades e de holdup dos sólidos para uma coluna de recheio aleatório. Na Washington University em St. Louis, no Laboratório de Engenharia da Reação Química (CREL), um tomógrafo com duas fontes radioativas (DSCT) capaz de gerar imagens da distribuição do holdup das fases para sistemas dinâmicos com três fases móveis foi validado com êxito. Uma nova metodologia para reconstrução de imagens, que garantiu alta precisão na geração das distribuições do holdup em sistemas de grande porte, foi aplicada. O DSCT permitiu avaliar a influência de parâmetros de operação e do desenho de um aerador em um bioreator na escala piloto. O efeito do desenho de um distribuidor de gás líquido e do regime de escoamento foram determinados para um reator monolítico utilizando o DSCT. Os equipamentos e técnicas desenvolvidas neste trabalho podem ser considerados como uma ferramenta efetiva de pesquisa, intensificando estudos experimentais em uma grande gama de sistemas multifásicos através de geração de imagens. Para isto, foram superadas várias limitações comuns a outras técnicas tomográficas existentes utilizadas no estudo de sistemas com duas e três fases dinâmicas, onde os conhecimentos adquiridos nestes estudos poderão melhorar a compreensão básica dos efeitos de desenho e dinâmica em reatores multifásicos. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
232

Aplicação do método da expansão em funções hierárquicas na solução das equações de Navier-stokes para fluidos incompressíveis

SABUNDJIAN, GAIANE 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:54:00Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:26Z (GMT). No. of bitstreams: 1 12431.pdf: 23287148 bytes, checksum: ca5f3b291fb81099ce731e9a131ce645 (MD5) / Tese (Doutoramento) / IPEN/T / Escola Politecnica, Universidade de Sao Paulo - POLI/USP
233

Fluid Flow And Electrochemical Bias Induced Effects In Carbon Nanotubes And Raman Studies On Iron Perovskites

Ghosh, Shankar 02 1900 (has links) (PDF)
This thesis is divided into two parts; the first part presents results on the effect of the flow of fluids and electrochemical bias on single walled carbon nanotubes (SWNT). Issues pertaining to the entry of water into the cylindrical pores of the SWNT and its freezing dynamics have also been addressed in the first part of the thesis. The second part of the thesis deals with Raman scattering studies of iron perovskite namely CaFeO3 and La0.33Sr0.67FeO3 across their charge-disproportionation transition temperatures. PART 1 Chapter 1: Introduction This chapter presents an overview of the systems studied in this thesis, i.e., (i) SWNT and (ii) iron perovskite’s containing iron in Fe4+(d4) state, namely CaFeO3 and La0.33Sr0.67FeO3. It also contains an introduction to the two spectroscopic techniques used in the present thesis, namely Raman scattering and Nuclear Magnetic Resonance. A quantum mechanical picture of Raman scattering, in general, and resonance Raman scattering in particular along with a brief introduction to the apparatus used both for the micro Raman and the low temperature experiments is presented in this chapter. A general introduction to Nuclear Magnetic Resonance (NMR) is also given with an emphasis on various interactions leading to the broadening of the NMR absorption linewidths. Chapter 2: Carbon nanotube liquid flow sensors This chapter presents experimental results and theoretical understandings of the generation of electrical signals by flowing polar/ionic liquids over a mat of SWNT. We first present experimental findings that the flow of a variety of liquids on SWNT bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be a logarithmic function of the flow speed over a wide range. The magnitude of the signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid and weakly on the viscosity of the liquid. Furthermore its direction can be controlled by electrochemical biasing of the nanotubes. The ratio of the open circuit voltage to the short circuit current is found to be governed by the nanotube resistance. These experimental findings are inconsistent with the conventional idea of a streaming potential as the possible cause. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it. Two alternative understandings of the experimental findings are also presented in this chapter. The first mechanism invokes the idea of a “pulsating ratchet” whereby the charge carriers in the nanotubes experience an asymmetric spatial bias because of the shear-induced deformation of the ion-plus-polar atmosphere at the liquid-solid interface temporally modulated by the liquid flow. In addition, we also propose that experimental findings can be understood qualitatively in terms of three interrelated ideas: (a) Induced friction: The fluctuating charge density of the ions close to the nanotube couples coulombically to the charge carriers in the nanotube and, therefore, offers a friction to the motion of these charge carriers (in addition to the Ohmic friction intrinsic to the carbon nanotubes); (b) Flow-induced drag: In virtue of the above frictional coupling, an imposed liquid flow drags the charge carriers along through the nanotube; (c) Reduction of induced friction at high flow speeds: The space-time correlated Coulombic fluctuations, inherent to the liquid electrolyte, are advected by the liquid flow, and thus get Galilean boosted (Doppler shifted) as seen in the mean rest frame of the drifting carriers in the nanotube. This would cause a reduction of the frictional grip to the motion of the charge carriers in the nanotube with increasing flow speed resulting in a sublinear dependence of the charge drift-velocity (electrical response) on the liquid flow speed. With the above in mind, a quantitative derivation of these frictional effects, first from a heuristic argument, and then analytically from a Langevin-equation treatment have been presented. Chapter 3: Direct generation of voltage and current by gas flow over carbon nanotubes and semiconductors Having obtained experimental evidence of the generation of liquid flow induced electrical signals over single-walled carbon nanotubes, it was only natural to look for the same effect by flowing gases over nanotubes. We show here a direct generation of measurable voltages and currents when gas flows at modest speeds of a few meters per second over single-walled carbon nanotubes . Interestingly, unlike the previous effect (generation of voltages by flow of liquids over single-walled carbon nanotubes), this effect is not specific to single-walled carbon nanotubes and occurs for a wide variety of solids, including single and multi-walled carbon nanotubes, doped semiconductors and metals. Moreover, the gas flow induced signals depend quadratically on the gas flow velocities. This is in sharp contrast to the results obtained by flowing liquids over single-walled carbon nanotubes where the liquid flow generated signal was found to be logarithmically dependent on the flow velocities. In this chapter we provide evidence that the underlying mechanism for the gas flow generated electrical signal is an interplay of Bernoulli’s principle and the Seebeck effect: Pressure difference along streamlines gives rise to temperature difference across the sample which, in turn, produces the measured voltage. Chapter 4: Water at nanoscale confined in single-walled carbon nanotubes studied by NMR In this chapter, we seek experimental evidence of the occupancy of water in the cylindrical pores of the nanotubes. Proton NMR studies have been carried out as a function of temperature from 210 K to 300 K of water confined within SWNT. The NMR lineshape at and below the freezing point of bulk water is asymmetric which can be decomposed into a sum of two Lorentzians. The intensities of both the components decrease with lowering of temperature below 273 K, one component L1 vanishing below 242 K and the other component L2 below 217 K. Following the simulations of Koga et al. (Nature, 412, 802, 2001) showing that the radial density profile of confined water in SWNT has a distribution peak at the center which disappears below the freezing temperature, the L1 component is associated with the protons of the water molecules at the center and the L2 component is associated with protons of water molecules associated at a distance ~ 3Å away from the walls of the nanotubes. In this scenario the complete freezing of the water at ~ 212 K is preceded by the withdrawal of the water molecules from the center of the nanotubes. Chapter 5: Electrochemical tuning of band structure of single walled carbon nanotubes probed by in-situ resonance Raman scattering The work presented in this chapter is motivated by the experimental observation that SWNT have excellent actuating properties, i.e, porous sheets of carbon nanotubes were shown to suffer length changes when subjected to electrochemical bias, with action observed up to 1 KHz. The fast response of the nanotube actuator rules out any mechanism related to the intercalation of ions as is applicable to the case of the polymer actuators. This chapter presents results of in-situ resonance Raman scattering of SWNT investigated under electrochemical biasing. The experimental results show that the intensity of the radial breathing mode varies significantly in a non-monotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. The tangential mode is, however, not affected. These results can be quantitatively understood in terms of the changes in the energy gaps between the one-dimensional van Hove singularities in the electron density of states arising possibly due to the alterations in the overlap integral of π-bonds between the p-orbitals of adjacent carbon atoms. This chapter also contains results from ab-initio restricted Hartree Fock calculations in a simplistic geometry where a nanotube is surrounded by two concentric rings of ions. The ab-initio calculation results suggest that the dominant contribution to the strain developed in the nanotubes originates from the electrostatic interactions between the ions and the delocalized π electrons as compared to the doping effects. PART 2 Chapter 6: Raman scattering in CaFeO3 and La0.33Sr0.67FeO3 across the charge disproportionation phase transition Temperature dependent micro-Raman studies of orthorhombic CaFeO3 and rhombohedral La0.33Sr0.67FeO3 were carried out with an aim to study the role of phonons in the formation of the charge disproportioned state (Fe4+ → Fe5++Fe3+) below the transition temperature (Tco) of 290 K and 200 K, respectively. Shell model lattice dynamics calculations were performed for CaFeO3 to assign the Raman modes and determine their vibrational pattern. Temperature dependence of the peak positions and peak widths of various modes for both the systems show distinct changes across their respective transition temperatures. In CaFeO3 the symmetric stretching mode at 707 cm−1 splits into two modes, 707 cm−1 and 684 cm−1 . Interestingly, the 707 (684) cm−1 mode appears only in HH(HV) polarization. In comparison, the Raman band at 704 cm−1 in La0.33Sr0.67FeO3 which has been assigned to the Raman forbidden symmetric stretching mode, disappears below Tco. In addition, two modes at 307 cm−1 and 380 cm−1 of La0.33Sr0.67FeO3 approach each other at Tco. Our experiments show that for both the systems, CaFeO3 and La0.33Sr0.67FeO3, the lattice distortion changes across Tco. Chapter 7: Summary and future outlook The last chapter summarizes our main findings reported in the thesis. It also contains possible future studies which are worth pursuing to add further insights in the issues addressed.
234

Zvýšení plnicí účinnosti zážehového dvoudobého motoru / Increase of Charging Efficiency of Two Stroke Engine

Mainuš, Jiří January 2013 (has links)
The diploma thesis introduces a design of a construction alteration whose aim is to increase the injection efficiency of the given two-stroke engine. The first chapter deals with a construction solution of the replacement of cylinder charge. The following chapters focus on the procedure of creating a 3D model of a cylinder unit through reverse engineering. Furthermore, the thesis contains a CFD simulation of the fluid flow including the evaluation of the results and experimental measurement on an aerodynamic track.
235

Recent numerical techniques for differential equations arising in fluid flow problems

Muzara, Hillary 20 September 2019 (has links)
PhD (Applied Mathematics) / Department of Mathematics and Applied Mathematics / The work presented in this thesis is the application of the recently introduced numerical techniques, namely the spectral quasi-linearization method (SQLM) and the bivariate spectral quasi-linearization method (BSQLM), in solving problems arising in fluid flow. Firstly, we use the SQLM to solve the highly non-linear one dimensional Bratu problem. The results obtained are compared with exact solution and previously published results using the B-spline method, Picard’s Green’s Embedded Method and the iterative finite difference method. The results obtained show that the SQLM is highly accurate and computationally efficient. Secondly, we use the bivariate spectral quasi-linearization method to solve the two dimensional Bratu problem. Since the exact solution of the two-dimensional Bratu problem is unknown, the results obtained are compared with those previously published results using the finite difference method and the weighted residual method. Thirdly, we use the BSQLM to study numerically the boundary layer flow of a third grade non-Newtonian fluid past a vertical porous plate. We use the Jeffrey fluid as a typical fluid which shows non-Newtonian characteristics. Similarity transformations are used to transform a system of coupled nonlinear partial differential equations into a system of linear partial differential equations which are then solved using BSQLM. The influence of some thermo-physical parameters namely, the ratio relaxation to retardation times parameter, Prandtl number, Schmidt number and the Deborah number is investigated. Also investigated is the influence of the ratio of relaxation to retardation times, Schmidt number and the Prandtl number on the skin friction, heat transfer rate and the mass transfer rate. The results obtained show that increasing the Schmidt number decelerates the fluid flow, reduces the skin friction, heat and mass transfer rates and strongly depresses the fluid concentration whilst the temperature is increased. The fluid velocity, the skin friction, heat and mass transfer rates are increased with increasing values of the relaxation to retardation parameter whilst the fluid temperature and concentration are reduced. Using the the solution based errors, it was shown that the BSQLM converges to the solution only after 5 iterations. The residual error infinity norms showed that BSQLM is very accurate by giving an error of order of 10−4 within 5 iterations. Lastly we propose a model of the non-Newtonian fluid flow past a vertical porous plate in the presence of thermal radiation and chemical reaction. Similarity transformations are used to transform a system of coupled nonlinear partial differential equations into a system of linear partial differential equations. The BSQLM is used to solve the system of equations. We investigate the influence of the ratio of relaxation to retardation parameter, Schmidt number, Prandtl number, thermal radiation parameter, chemical reaction iv parameter, Nusselt number, Sherwood number, local skin fiction coefficient on the fluid concentration, fluid temperature as well as the fluid velocity. From the study, it is noted that the fluid flow velocity, the local skin friction coefficient, heat and mass transfer rate are increased with increasing ratio of relaxation to retardation times parameter whilst the fluid concentration is depressed. Increasing the Prandtl number causes a reduction in the velocity and temperature of the fluid whilst the concentration is increased. Also, the local skin friction coefficient and the mass transfer rates are depressed with an increase in the Prandtl number. An increase in the chemical reaction parameter decreases the fluid velocity, temperature and the concentration. Increasing the thermal radiation parameter has an effect of decelerating the fluid flow whilst the temperature and the concentration are slightly enhanced. The infinity norms were used to show that the method converges fast. The method converges to the solution within 5 iterations. The accuracy of the solution is checked using residual errors of the functions f, and . The errors show that the BSQLM is accurate, giving errors of less than 10−4, 10−7 and 10−8 for f, and , respectively, within 5 iterations. / NRF
236

Electrokinetic Manipulation and Electrochemical Detection of Bacteria and Development of Hot-Square-wave Voltammetry

Frkonja-Kuczin, Ariana 25 August 2020 (has links)
No description available.
237

COUPLED DYNAMICS OF HEAT TRANSFER AND FLUID FLOW IN SHEAR RHEOMETRY

Sridharan, Harini 26 August 2020 (has links)
No description available.
238

Effect of swirling blade on flow pattern in nozzle for up-hill teeming

Hallgren, Line January 2006 (has links)
The fluid flow in the mold during up-hill teeming is of great importance for the quality of the cast ingot and therefore the quality of the final steel products. At the early stage of the filling of an up-hill teeming mold, liquid steel enters, with high velocity, from the runner into the mold and the turbulence on the meniscus could lead to entrainment of mold flux. The entrained mold flux might subsequently end up as defects in the final product. It is therefore very important to get a mild and stable inlet flow in the entrance region of the mold. It has been acknowledged recently that swirling motion induced using a helix shaped swirl blade, in the submerged entry nozzle is remarkably effective to control the fluid flow pattern in both the slab and billet type continuous casting molds. This result in increased productivity and quality of the produced steel. Due to the result with continuous casting there is reason to investigate the swirling effect for up-hill teeming, a casting method with similar problem with turbulence. With this thesis we will study the effect of swirling flow generated through a swirl blade inserted into the entry nozzle, as a new method of reducing the deformation of the rising surface and the unevenness of the flow during filling of the up-hill teeming mold. The swirling blade has two features: (1) to generate a swirling flow in the entrance nozzle and (2) to suppress the uneven flow, generated/developed after flowing through the elbow. The effect of the use of a helix shaped swirl blade was studied using both numerical calculations and physical modelling. Water modelling was used to assert the effect of the swirling blade on rectifying of tangential and axial velocities in the filling tube for the up-hill teeming and also to verify the results from the numerical calculations. The effect of swirl in combination with diverged nozzle was also investigated in a similar way, i. e. with water model trials and numerical calculations. / QC 20101115
239

EXPERIMENTAL AND NUMERICAL ANALYSIS OF ENVIRONMENTAL CONTROL SYSTEMS FOR RESILIENT EXTRA-TERRESTRIAL HABITATS

Hunter Anthony Sakiewicz (15339325) 22 April 2023 (has links)
<p> As space exploration continues to advance, so does the drive to inhabit celestial bodies. In<br> order to expand our civilization to the Moon or even other planets requires an enormous amount of research and development. The Resilient Extra-Terrestrial Habitat Institute is a NASA funded project that aims to develop the technology needed to establish deep-space habitats. Deep-space inhabitation poses many challenges that are not present here on earth. The Moon, for example, has temperatures that range from -233−123°C. Aside from the extreme temperatures, a variety of thermal loads will need to be handled by the Environmental Control and Life Support System (ECLSS). Aside from the research and architecture of the International Space Station’s ECLSS, very little information is known about disturbances related to the thermal management of extra- terrestrial habitats.<br> </p> <p>RETHi is developing a Cyber-Physical Testbed (CPT) that represents a one-fifth scale<br> prototype of a deep space habitat. In order to answer difficult research questions regarding ECLSS and thermal management of a deep-space habitat, a heat pump was modeled and validated with the physical part of the CPT. Once validated, the heat pump model is able to accurately predict the steady state behavior given the indoor and outdoor conditions of the testbed. When coupled with the interior environment (IE) model, it gives insight into the system’s requirements and response. Experimental testing was conducted with the heat pump in order to validate the model. After the model was validated, a series of parametric studies were conducted in order to investigate the effects of varying thermal loads and dehumidification. Since the groundwork was laid through model development and experimentation, future work consists of designing a more versatile heat pump to test a variety of disturbance scenarios. Although the heat pump model is specifically designed for the CPT, it proves to be versatile for other closed and pressurized environments such as aircraft and clean rooms according to the analysis of dehumidification and dependence on pressure. </p>
240

[en] LATTICE BOLTZMANN METHOD: AN APPROACH TO DISSOLUTION IN 3D PORUS MEDIA / [pt] MÉTODO LATTICE BOLTZMANN: UMA ABORDAGEM PARA DISSOLUÇÃO EM UM MEIO POROSO 3D

JOAO MARCOS SILVA DA COSTA 23 June 2023 (has links)
[pt] Neste trabalho aplicamos o método Lattice Boltzmann (LBM) para simular os processos de reações químicas que ocorrem na interação entre o fluido e a fase sólida, modificando o meio poroso. Para isso apresentaremos como o método LBM aborda a simulação do escoamento de fluido em um meio poroso irregular para os casos de um ou mais fluidos incluindo o processo de dissolução química. A partir dos processos anteriores, propomos uma modificação onde a dissolução possa ocorrer como uma característica do fluido que interage com a fase sólida. Ao abordar a dissolução como característica da interação do fluido com a fase sólida, é possível ter uma maior compreensão de como o fluido pode modificar a geometria do meio poroso e impactar nas mudanças de fluxo. A proposta de modificação foi avaliada em alguns casos em que o fluxo no meio poroso é bem definido: o canal aberto, canal com cilindros e em um meio poroso de geometria complexa. A proposta foi estendida para a simulação em um meio poroso 3D, onde analisamos como a dissolução foi impactada pela presença de forças externas como a gravidade. / [en] In this work, we apply the Lattice Boltzmann (LBM) method to simulate the chemical reaction processes that occur in the interaction between the fluid and the solid phase, modifying the porous medium. For this, we will present how the LBM method approaches fluid flow simulation in an irregular porous medium for cases of one or more fluids, including the chemical dissolution process. Based on the previous processes, we propose a modification where dissolution can occur as a characteristic of the fluid that interacts with the solid phase. By approaching dissolution as a characteristic of the interaction of the fluid with the solid phase, it is possible to better understand how the fluid can modify the geometry of the porous medium and impact the flow changes. The modification proposal was evaluated in some cases where the flow in the porous medium is well defined: the open channel, a channel with cylinders, and a porous medium with complex geometry. The proposal was extended to the simulation in a 3D porous medium, where we analyzed how the dissolution was impacted by external forces such as gravity.

Page generated in 0.3707 seconds