Spelling suggestions: "subject:"fluides incompressible"" "subject:"fluides compressibles""
1 |
Fluides autour d'obstacles mincesLacave, Christophe 08 December 2008 (has links) (PDF)
Nous étudions dans cette thèse le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l'obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d'Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. Nous travaillons tout d'abord en dimension deux. En utilisant des outils de l'analyse complexe, nous traitons le cas des fluides idéaux et visqueux à l'extérieur d'une courbe. Nous regardons ensuite en dimension trois les fluides visqueux à l'extérieur d'une surface. Nous finissons enfin par montrer l'unicité du problème mixte Euler point-vortex avec un seul point vortex introduit par Marchioro et Pulvirenti, dans le cas où le tourbillon initial est constant près du point vortex.
|
2 |
Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés. Application aux écoulements fluides tridimensionnelsIsmail, Mourad 26 May 2004 (has links) (PDF)
L'objectif de cette thèse est, d'une part l'analyse mathématique de la méthode de la frontière élargie (The Fat Boundary Method, F.B.M.), et d'autre part, son adaptation à la simulation numérique des écoulements fluides tridimensionnels incompressibles dans des géométries complexes (domaines perforés). Dans un premier temps, nous nous plaçons dans le cadre de problèmes elliptiques modèles de type Poisson ou Helmholtz posés dans un domaine perforé (typiquement un domaine parallélépipédique contenant des obstacles sphériques). En utilisant la F.B.M., le problème initial est remplacé par une résolution dans le domaine non perforé permettant l'utilisation d'un maillage cartésien, offrant ainsi un cadre approprié pour l'utilisation de solveurs rapides. Nous effectuons donc l'analyse mathématique de la F.B.M., notamment la convergence et l'estimation d'erreur dans ce cadre particulier. Les résultats théoriques ainsi obtenus sont également illustrés par des tests numériques. La deuxième partie est dédiée à l'application de ces outils pour la simulation numérique d'écoulements fluides incompressibles tridimensionnels. La stratégie adoptée consiste à discrétiser les équations de Navier-Stokes en combinant la F.B.M. (pour la discrétisation spatiale), un schéma de projection (pour la discrétisation temporelle) et la méthode des caractéristiques (pour le traitement du terme convectif). Nous présentons ainsi plusieurs simulations numériques tridimensionnelles correspondant aux écoulements fluides en présence d'obstacles fixes et mobiles (mouvements imposés).
|
3 |
Quelques problèmes relatifs à la dynamique des points vortex dans les équations d'Euler et de Ginzburg-Landau complexeMiot, Evelyne 04 December 2009 (has links) (PDF)
Les problèmes étudiés dans cette thèse ont trait à la dynamique des points vortex dans deux équations pour les fluides ou superfluides bidimensionnels. La première partie est dévolue à l'équation d'Euler incompressible. Nous y analysons le système mixte Euler-points vortex, introduit par Marchioro et Pulvirenti, qui décrit l'évolution d'un tourbillon obtenu par superposition de points vortex et d'une composante plus régulière. Nous examinons diverses problématiques telles que le lien entre les points de vue lagrangien et eulérien, l'unicité, l'existence et l'expansion du support du tourbillon. La seconde partie de la thèse est consacrée à une équation de Ginzburg-Landau complexe obtenue en ajoutant un terme de dissipation à l'équation de Gross-Pitaevskii. Après avoir examiné le problème de Cauchy dans l'espace d'énergie correspondant, nous étudions la dynamique des points vortex dans le cadre de données très bien préparées. Dans un dernier temps, nous considérons un autre régime asymptotique, sans vortex, dans lequel les solutions sont des perturbations de champs constants de module égal à un. Une dynamique de type ondes amorties pour la perturbation est mise en évidence.
|
4 |
Études adaptatives et comparatives de certains algorithmes en optimisation : implémentations effectives et applicationsYassine, Adnan 04 July 1989 (has links) (PDF)
Sont étudiés: 1) l'algorithme s.g.g.p. Pour la résolution d'un programme linéaire général; 2) la méthode de pivotage de Lemke, la methode du gradient conjugue conditionnel et la methode de l'inverse partiel pour la résolution des programmes quadratiques convexes; 3) les méthodes d'approximation extérieure et les méthodes de coupes planes et les méthodes de région de confiance pour l'optimisation non convexe.
|
Page generated in 0.0876 seconds