• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 11
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 110
  • 42
  • 23
  • 18
  • 17
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
<p>Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor.</p><p>An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.</p>
72

Gas-Solid Displacement Reactions for Converting Silica Diatom Frustules into MgO and TiO2

Tugba Kalem January 2004 (has links)
Thesis (M.S.); Submitted to Iowa State Univ., Ames, IA (US); 19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2488" Tugba Kalem. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
73

Tangential leading edge blowing for flow control on non-slender delta wings

Chard, James January 2018 (has links)
In the military arena there is an increase in demand for Low Observable (LO) flight vehicles. This drive for low observability imposes limits on Leading Edge (LE) sweep angles and prohibits the use of a tailplane/fin resulting in unconventional configurations; a typical example of which are Unmanned Combat Aerial Vehicles (UCAVs). This class of aircraft poses stability and control problems due to the early onset of flow separation. The focus of this project is on the on the use of Tangential Leading Edge Blowing (TLEB) as a means of separation suppression on such vehicles. This project is unique in that the TLEB slot is positioned on the wing lower surface facing the oncoming freestream. Also, the model in this project is representative of the outboard panel of a UCAV wing, a geometry on which TLEB has not been explored in the past. A swept wing model (LE sweep = 47 degrees, AR = 3) was designed. The model has a TLEB nozzle with a slot on the lower surface at approx. 1% yawed chord that spans 0.58 m (approx. 70% LE length). Baseline wing characteristics were obtained with the full slot exposed. The wing showed a variation in pitch between CL = 0 and 0.6 which from oil flow visualisation is believed to be due to laminar separation. At CL = 0.6 there is a positive pitch break which flow visualisation suggests is due to the occurrence of a LE vortex. Sensitivity studies for slot configuration, Re number and transition fixing were carried out. The blowing rates 0.0025, 0.005, 0.025, 0.05 were tested for two slot lengths; one full span (0.58 m) and another third span positioned at the midpoint of the full slot. All blowing rates show some suppression of the LE vortex and therefore reduction in severity of the pitch break at CL = 0.6. High blowing rates produce a negative shift in CM, which CFD suggests is due to a large amount of suction produced on the lower wing surface adjacent to the slot exit. This means the available trim power is less than for the lower blowing rates. Wool tuft results for high blowing rates from the middle slot show an increase in streamwise flow at the TE suggesting TLEB is capable of improving the effectiveness of TE devices. The effectiveness of TLEB at low blowing rates has been shown to be high compared to that found in literature. A 1st order analysis of the impact of TLEB on a full scale system shows realistic options.
74

Thermal Actuation and Fluidic Characterization of a Fluorescence-Based Multiplexed Detection System

January 2018 (has links)
abstract: This work describes efforts made toward the development of a compact, quantitative fluorescence-based multiplexed detection platform for point-of-care diagnostics. This includes the development of a microfluidic delivery and actuation system for multistep detection assays. Early detection of infectious diseases requires high sensitivity dependent on the precise actuation of fluids. Methods of fluid actuation were explored to allow delayed delivery of fluidic reagents in multistep detection lateral flow assays (LFAs). Certain hydrophobic materials such as wax were successfully implemented in the LFA with the use of precision dispensed valves. Sublimating materials such as naphthalene were also characterized along with the implementation of a heating system for precision printing of the valves. Various techniques of blood fractionation were also investigated and this work demonstrates successful blood fractionation in an LFA. The fluid flow of reagents was also characterized and validated with the use of mathematical models and multiphysics modeling software. Lastly intuitive, user-friendly mobile and desktop applications were developed to interface the underlying Arduino software. The work advances the development of a system which successfully integrates all components of fluid separation and delivery along with highly sensitive detection and a user-friendly interface; the system will ultimately provide clinically significant diagnostics in a of point-of-care device. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2018
75

Techniques to inject pulsating momentum

Kranenbarg, Jelle January 2020 (has links)
Hydro power plants are an essential part of the infrastructure in Sweden as they stand for a large amount of the produced electricity and are used to regulate supply and demand on the electricity grid. Other renewable energy sources, such as wind and solar power, have become more popular as they contribute to a fossil free society. However, wind and solar power are intermittent energy sources causing the demand for regulating power on the grid to increase. Hydro power turbines are designed to operate at a certain design point with a specific flow rate. The plants are operated away from the design point when used to regulate the supply and demand of electricity. This can cause a specific flow phenomenon to arise in the draft tube at part load conditions called a Rotating Vortex Rope (RVR) which causes dangerous pressure fluctuation able to damage blades and bearings. A solution to mitigate a RVR is to inject pulsating momentum into the draft tube by using an actuator operating at a certain frequency. A literature study was conducted and three techniques were numerically simulated using ANSYS Workbench 19.0 R3; a fluidic oscillator, a piston actuator and a synthetic jet actuator. A dynamic mesh was used to simulate the movement of the piston actuator and diaphragm of the synthetic actuator whilst the mesh of the fluidic oscillator was stationary. The relative errors of the three numerical models were all below 3 %. All devices showed promising results and could potentially be used to mitigate a RVR because they all have the ability to produce high energy jets. The fluidic oscillator had an external supply of water, whereas the other two did not, which means that it could inject the largest mass flow. The piston actuator required a driving motor to move the piston. The diaphragm of the synthetic jet actuator was moved by a Piezoelectric element. Advantages of the fluidic oscillator are that it has no moving parts, in contrary to the two other devices, it can directly be connected to the penstock or draft tube to obtain the required water supply and it is easy to install. It will most likely also be smaller compared to the other two for the same mass flow rate. It does however not generate a pulsating jet, but rather an oscillating jet. The other two devices generate pulsating jets, but have problems with low pressure areas during the intake stroke which can cause cavitation problems. These areas cause the formation of vortex rings close to the outlet. Simulations showed that a coned piston together with a coned cylinder outlet could decrease losses by almost 16 % compared to a normal piston and cylinder. It also decreased the risk for cavitation and the required force to move the piston. Otherwise, a shorter stroke length for a constant cylinder diameter or a longer stroke length for a constant volume displacement also decreased the risk for cavitation and required force. The gasket between the piston and cylinder is a potential risk for leakage. A solution to avoid critical low pressure areas is to install an auxiliary fluid inlet or valve which opens at a certain pressure for the piston actuator as well as the synthetic jet actuator. This will also allow larger mass flow rates and a higher injected momentum. Both devices are more complicated to install and require likely more maintenance compared to the fluidic oscillator. However, there exist many possible design options for the piston actuator. The design of the synthetic jet is more limited because of the diaphragm. The amplitude of the diaphragm also has a direct effect on the pressure levels. The losses increased proportional to the mass flow to the power of three which suggests that it is better to install many small actuators instead of a few large ones.
76

Interconnection, Interface And Instrumentation For Micromachined Chemical Sensors

Palsandram, Naveenkumar Srinivasaiah 01 January 2005 (has links)
In realizing a portable chemical analysis system, adequate partitioning of a reusable component and a disposable is required. For successful implementation of micromachined sensors in an instrument, reliable methods for interconnection and interface are in great demand between these two major parts. This thesis work investigates interconnection methods of micromachined chip devices, a hybrid fluidic interface system, and measurement circuitry for completing instrumentation. The interconnection method based on micromachining and injection molding techniques was developed and an interconnecting microfluidic package was designed, fabricated and tested. Alternatively, a plug-in type design for a large amount of sample flow was designed and demonstrated. For the hybrid interface, sequencing of the chemical analysis was examined and accordingly, syringe containers, a peristaltic pump and pinch valves were assembled to compose a reliable meso-scale fluidic control unit. A potentiostat circuit was modeled using a simulation tool. The simulated output showed its usability toward three-electrode electrochemical microsensors. Using separately fabricated microsensors, the final instrument with two different designs--flow-through and plug-in type was tested for chlorine detection in water samples. The chemical concentration of chlorine ions could be determined from linearly dependent current signals from the instrument.
77

Enhanced Flame Stability and Control: The Reacting Jet in Vitiated Cross-Flow and Ozone-Assisted Combustion

Pinchak, Matthew D. 07 June 2018 (has links)
No description available.
78

AN INVESTIGATION OF INNOVATIVE TECHNOLOGIES FOR REDUCTION OF JET NOISE IN MEDIUM AND HIGH BYPASS RATIO TURBOFAN ENGINES

CALLENDER, WILLIAM BRYAN 01 July 2004 (has links)
No description available.
79

Low-Cost Nanopatterning using Self-Assembled Ceramic Nanoislands

Zimmerman, Lawrence Burr 24 September 2009 (has links)
No description available.
80

Microresonators for organic semiconductor and fluidic lasers

Vasdekis, Andreas E. January 2007 (has links)
This thesis describes a number of studies of microstructured optical resonators, designed with the aim of enhancing the performance of organic semiconductor lasers and exploring potential applications. The methodology involves the micro-engineering of the photonic environment in order to modify the pathways of the emitted light and control the feedback mechanism. The research focuses on designing new organic microstructures using established semi-analytical and numerical methods, developing fabrication techniques using electron-beam lithography, and optically characterising the resulting structures. Control of the feedback mechanism in conjugated polymer lasers is first investigated by studying Distributed Feedback or photonic crystal resonators based on a square feedback lattice. This study identified the diffraction to free space radiation as a major source of loss in current microstructured resonator designs. By cancelling the coupling to free space through the use of different feedback symmetries and diffraction orders, a threshold reduction by almost an order of magnitude is demonstrated. The introduction of mid-gap defect photonic states in an otherwise uniformly periodic structure was studied in Distributed Bragg Reflector (DBR) resonators. This enabled GaN diode pumped polymer lasers to be demonstrated, indicating that the transition from complex excitation sources to more compact systems is possible. Devices for potential applications in the field of optical communications are also explored by demonstrating a polymer DBR laser based on silicon. In this way, the potential for integrating conjugated polymers with silicon photonics is confirmed. Photonic crystal fibres, which have a periodic microstructure in the transverse direction, are explored as an alternative means for controlling the optical properties of organic lasers. Fluidic fibre organic lasers were demonstrated as efficient sources with good spectral purity. In these devices, mechanisms to tune the emission wavelength were explored and the origin of the frequency selection mechanism was investigated.

Page generated in 0.0738 seconds