1 |
High-temperature superconductivity in a family of iron pnictide materialsGillett, Jack January 2011 (has links)
The work in this thesis falls roughly into three parts, which I characterise loosely as a developmental stage, an exploratory stage, and an attempt to contribute to understanding of the field. In the developmental stage, I have worked to design a variety of methods to create high-quality samples of various Iron Pnictide superconductors, to dope them with various chemicals and to characterise the resulting crystalline samples. I discuss in depth the signature of good quality crystals and the various experiments that they have been used in by myself and my collaborators. These processes are ongoing and will hopefully continue to contribute to my research group's capabilities. My exploratory work involves a detailed survey of one particular family, Sr(Fe1-xCox)2As2, as the level of Cobalt is varied, and the mapping of the phase diagram for the system. I have also made a comparison to the better-measured Barium analogue, and discuss the reasons for the differences in character between the two, most notably the lack of a splitting of the structural and magnetic transitions in the first species. I also discuss the effect of pressure, which can lead to superconductivity in lightly doped samples for very modest pressures; and annealing, which increases transition temperatures within samples, on a limited quantity of crystals. Finally, I attempt to contribute to the understanding of the field via a series of Resonant Ultrasound Spectroscopic experiments conducted by a collaborator on my crystals and analysed by me. I see distinct first-order transitions in the parent compounds, characterisable above the high-T structural transition within a Ginzburg-Landau pseudoproper ferroelastic scheme for a transition coupling weakly to strain but driven by another order parameter. My observations allow several statements about the symmetry of the order parameter and are suggestive of a non-magnetically driven structural transition. In the case of doped samples a much richer behavior is seen, with a broad transition and simultaneous relaxation of all elastic peaks and a broad temperature range of significant dispersion. The effect of the softening is seen far above TN and lends strong support to the family of models predicting such high-T fluctuations.
|
2 |
Elaboration et caractérisation de matériaux non linéaires pour la conception de dispositifs laser émettant dans l'ultraviolet / Synthesis and characterization of nonlinear materials for UV solid-state lasersIlas, Simon 04 March 2014 (has links)
Les lasers solides émettant dans l'UV sont l'objet de nombreux efforts de recherche. Ainsi, deux cristaux non linéaires ont été développés et caractérisés pour réaliser la conversion de fréquences laser dans le domaine UV : Ca5(BO3)3F (CBF) et YAl3(BO3)4 (YAB). Concernant les cristaux de CBF, l'influence des gradients thermiques ainsi que de nouveaux flux ont été étudiés en vue d'améliorer la qualité cristalline. La génération du troisième harmonique à 343 nm en type II a été réalisée pour la première fois dans CBF. 300 mW correspondant à un rendement ? (1030 ' 343 nm) = 1,5 % ont été obtenus. L'utilisation de flux à base de LaB3O6 a permis la synthèse de cristaux de YAB par la méthode TSSG. Les propriétés physiques, structurales ainsi que les défauts de ces cristaux ont été caractérisés. De bonnes performances ont été obtenues dans le cadre de la génération du quatrième harmonique à 266 nm puisqu'un rendement de conversion ? (1064 ' 266 nm) = 12,2 % a été atteint. / This PhD study is devoted to the growth and characterization of two promising NLO crystals for UV laser light generation : Ca5(BO3)3F (CBF) and YAl3(BO3)4 (YAB). Concerning CBF, the influence of thermal gradients and new fluxes have been studied in order to improve the crystal quality. The third harmonic generation at 343 nm in CBF is demonstrated for the first time. 300 mW of average power and 1,5 % conversion efficiency from 1030 to 343 nm have been obtained. The use of the flux LaB3O6 allows the growth YAB crystals by TSSG method. Structural and physical properties as well as extended defects and impurities of these crystals have been characterized. Fourth harmonic generation at 266 nm was performed in YAB and 12,2 % conversion efficiency from 532 to 266 nm has been obtained.
|
3 |
Flux growth and characteristics of cubic boron phosphideNwagwu, Ugochukwu January 1900 (has links)
Master of Science / Department of Chemical Engineering / J. H. Edgar / Boron phosphide, BP, is a III-V compound semiconductor with a wide band gap of 2.0 eV that is potentially useful in solid state neutron detectors because of the large thermal neutron capture cross-section of the boron-10 isotope (3840 barns).
In this study, cubic BP crystals were grown by crystallizing dissolved boron and phosphorus from a nickel solvent in a sealed (previously evacuated) quartz tube. The boron - nickel solution was located at one end of the tube and held at 1150°C. Phosphorus, initially at the opposite end of the tube at a temperature of 430°C, vaporized, filling the tube to a pressure of 1–5 atmospheres. The phosphorus then dissolved into solution, producing BP. Transparent red crystals up to 4 mm in the largest dimension with mostly hexagonal shape were obtained with a cooling rate of 3°C per hour. The crystal size decreased as the cooling rate increased, and also as growth time decreased. The characterization with x-ray diffraction (XRD) and Raman spectroscopy established that the BP produced through this method were highly crystalline. The lattice constant of the crystals was 4.534 Ǻ, as measured by x-ray diffraction. Intense, sharp Raman phonon peaks were located at 800 cm[superscript]-1 and 830 cm[superscript]-1, in agreement with the values reported in the literature. The FWHM for XRD and Raman spectra were 0.275° and 4 cm[superscript]-1 which are the narrowest ever reported and demonstrates the high quality of the produced crystals. Energy dispersive x-ray spectroscopy (EDS) and scanning electron microscope (SEM) also confirmed the synthesized crystals were cubic BP crystals, with a boron to phosphorus atomic ratio of 1:1. Defect selective etching of BP at 300ºC for two minutes with molten KOH/NaOH revealed triangular and striated etch pits with low densities of defects of ~4 x 10[superscript]7 cm[superscript]-2 and 9.2 x 10[superscript]7 cm[superscript]-2 respectively.
The BP crystals were n-type, and an electron mobility of ~39.8 cm[superscript]2/V*s was measured. This is favorable for application in neutron detection. Scaling to larger sizes is the next step through gradient freezing and employing a larger crucible.
|
4 |
Growth of Single Crystal and Thin Film Zinc GallateKarnehm, Trevor Ryan 26 July 2022 (has links)
No description available.
|
Page generated in 0.052 seconds