• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High performance switched reluctance drives for electric vehicle application

Weiner, Christian January 2000 (has links)
No description available.
2

A permanent magnet synchronous motor for an electric vehicle - design analysis

Chin, Yung-Kang January 2004 (has links)
<p>This thesis presents the study and the design analysis of apermanent magnet synchronous motor (PMSM) for the tractionapplication of an electric vehicle. An existing inductiontraction motor for an electric forklift benchmarks the expectedperformances of the proposed PMSM design. Further, thepossibility of using the identical stator as the one used inthe induction motor is explored for the fast prototyping. Theprototype motor is expected to be field-weakened and to have aconstant power speed range (CPSR) of 2.5 to 3.</p><p>A design approach based on the CPSR contour plot in aninterior permanent magnet (IPM) parameter plane is derived toobtain the possible designs that meet all the designspecifications and the targeted CPSR. This study provides thepossible alternative designs for the subsequent futureprototype motors.</p><p>An analytical approach to estimate the iron loss in PMsynchronous machines is developed and included in the designprocedure. The proposed technique is based on predicting theflux density waveforms in the various regions of the machine.The model can be applied at any specified load condition,including the field-weakening operation region. This model canbe ultimately embedded in the design process for a routine usein loss estimations.</p><p>The first prototype motor with an inset permanent magnetrotor has been built and the available measurements are used tovalidate the design performance. In particular, the thermalanalyses based both on the lumped-circuit approach and thenumerical method are compared with the measured results. Asecond and possibly a third prototype motor targeting a widerand higher performance will be carried out in the continuingphase of the project.</p><p><b>Keywords:</b>Constant Power Speed Range, Electric Vehicles,Field-weakening, Reference Flux Linkage, Iron Loss, PermanentMagnet Synchronous Motor, Thermal Analysis</p>
3

A permanent magnet synchronous motor for an electric vehicle - design analysis

Chin, Yung-Kang January 2004 (has links)
This thesis presents the study and the design analysis of apermanent magnet synchronous motor (PMSM) for the tractionapplication of an electric vehicle. An existing inductiontraction motor for an electric forklift benchmarks the expectedperformances of the proposed PMSM design. Further, thepossibility of using the identical stator as the one used inthe induction motor is explored for the fast prototyping. Theprototype motor is expected to be field-weakened and to have aconstant power speed range (CPSR) of 2.5 to 3. A design approach based on the CPSR contour plot in aninterior permanent magnet (IPM) parameter plane is derived toobtain the possible designs that meet all the designspecifications and the targeted CPSR. This study provides thepossible alternative designs for the subsequent futureprototype motors. An analytical approach to estimate the iron loss in PMsynchronous machines is developed and included in the designprocedure. The proposed technique is based on predicting theflux density waveforms in the various regions of the machine.The model can be applied at any specified load condition,including the field-weakening operation region. This model canbe ultimately embedded in the design process for a routine usein loss estimations. The first prototype motor with an inset permanent magnetrotor has been built and the available measurements are used tovalidate the design performance. In particular, the thermalanalyses based both on the lumped-circuit approach and thenumerical method are compared with the measured results. Asecond and possibly a third prototype motor targeting a widerand higher performance will be carried out in the continuingphase of the project. Keywords:Constant Power Speed Range, Electric Vehicles,Field-weakening, Reference Flux Linkage, Iron Loss, PermanentMagnet Synchronous Motor, Thermal Analysis / <p>QCR 20161026</p>
4

Control of Switched Reluctance Motors Considering Mutual Inductance

Bae, Han-Kyung 15 August 2000 (has links)
A novel torque control algorithm, which adopts a two-phase excitation, is proposed to improve the performance of the Switched Reluctance Motor (SRM) drive. By exciting two adjacent phases instead of single phase, the changing rate and the magnitude of the phase currents are much reduced. Therefore the existing problems caused by the single-phase excitation such as large torque ripple during commutation, increased audible noise and fatigue of the rotor shaft are mitigated. The electromagnetic torque is efficiently distributed to each phase by the proposed Torque Distribution Function (TDF) that also compensates the effects of mutual coupling. To describe the effects of mutual coupling between phases, a set of voltage and torque equations is newly derived for the two-phase excitation. Parameters of the SRM are obtained by Finite Element Analysis (FEA) and verified by measurements. It is shown that the mutual inductance of two adjacent phases partly contributes to generate the electromagnetic torque and introduces coupling between two adjacent phases in the current or flux linkage control loop, which has been neglected in the single-phase excitation. The dynamics of the current or flux linkage loop are coupled and nonlinear due to the mutual inductance between two adjacent phases and the time varying nature of inductance. Each phase current or flux linkage needs to be controlled precisely to achieve the required performance. A feedback linearizing current controller is proposed to linearize and decouple current control loop along with a gain scheduling scheme to maintain performance of the current control loop regardless of rotor position as well as a feedback linearizing flux linkage controller. Finally, to reduce current or flux linkage ripple, a unipolar switching strategy is proposed. The unipolar switching strategy effectively doubles the switching frequency without increasing the actual switching frequency of the switches. This contributes to the mitigation of current or flux linkage ripple and hence to the reduction of the torque ripple. / Ph. D.
5

Restaurador dinâmico de tensão sem saturação nos transformadores de conexão

Inocêncio, Jairo Dias 22 October 2013 (has links)
Made available in DSpace on 2015-05-08T14:57:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2400808 bytes, checksum: 3c7c682278f78e771b9fee7c273a134b (MD5) Previous issue date: 2013-10-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a technique to suppress saturation in series transformers applied to dynamic voltage restorer (DVR) systems. The technique consists in correcting the voltages which are injected through the transformers into the power system to compensate voltage sags. The presented method ensures complete elimination of the DC flux-linkage or shifts the flux-linkage curve, restricting their AC amplitude, so that the flux level does not exceed the limits of the transformer, preventing it works in the saturation region. The validation of this method will be realized from simulations and experimental results. / Este trabalho apresenta uma técnica para evitar a saturação dos transformadores de tensão em série aplicados em um restaurador dinâmico de tensão (DVR). A técnica consiste em alterar as tensões que são injetadas através dos transformadores para compensar afundamentos de tensão no sistema de potência. O método apresentado assegura uma eliminação completa do fluxo c.c. ou desloca a curva de fluxo, restringido sua amplitude c.a., de maneira que o nível de fluxo não exceda os limites do transformador, evitando que o mesmo trabalhe na região de saturação. A validação deste método será realizada a partir de simulações e resultados experimentais.
6

Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current

Ha, Keunsoo 04 August 2008 (has links)
Position estimation using only active phase voltage and current is presented to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fourier analysis, flux-linkage and position are estimated without external hardware circuitry such as a modulator and demodulator, resulting in increasing cost, as well as large position estimation error produced when the motional back emf is ignored near zero speed. Hence the proposed position estimation scheme covers the entire speed range including the standstill under various loads and it has high resolution information depending on switching frequency. Fourier series and Fast Fourier transform are employed to decompose the phase voltage and current into its first switching harmonic. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. The estimated values very closely track the actual values in dynamic simulations and experiments. It is shown that the proposed position estimation scheme using Fourier analysis is sufficiently accurate and works satisfactorily at various operating points. This research also proposes an accurate self-inductance measurement method. In general, when applying circulating currents within the body of a ferromagnetic material under conditions of a time varying magnetic flux, the effects of eddy current losses and resistance changes due to heating decrease the magnetic field strength and thereby the reduced magnetic field decreases the magnetic flux-linkage of SRM. These losses make a challenge to the measurement of magnetic characteristics of SRM. These motives lead to propose a measurement methodology based on 60 Hz sinusoidal excitation using a variable AC power supply, which provides an alternative to time domain integration approaches for self-inductance or flux-linkage measurement as well as eliminates error arising from thermal and eddy currents effects. The validation of the proposed method is verified with the correlation between the measurement and FEA results of flux-linkage. Furthermore, this research proposes the solutions for low cost and high efficiency drive systems, consisting of a split AC converter and a two-phase SRM. Its performance is analyzed and verified with experiments at the rated speed under various loads. It is believed that this drive system combined with the proposed position estimation scheme using Fourier analysis is a strong contender to be a low cost motor drive system with single switch per phase having comparable efficiency and acoustic noise level as an asymmetric drive system. / Ph. D.
7

Control Design and Analysis of an Advanced Induction Motor Electric Vehicle Drive

Herwald, Marc A. 20 May 1999 (has links)
This thesis is about the development and performance enhancement of an induction motor electric vehicle drive system. The fundamental operation of the induction motor drive hardware and control software are introduced, and the different modulation techniques tested are described. A software simulation package is developed to assist in the control design and analysis of the drive system. Next, to establish the efficiency gains obtained by using space vector modulation in the improved drive system, an inverter with hysteresis current control is compared to the same inverter with space vector modulation in steady state and on separate driving profiles. A method for determining induction motor harmonic losses is introduced and is based on obtaining the phase current harmonics from sampled induction motor stator phase currents obtained. Using a semi-empirical loss model, the induction motor losses are compared between different pulse width modulation control strategies throughout the torque versus speed operating region. Next, several issues related to the robustness of the control design are addressed. To obtain good performance in the actual vehicle, a new method for driveline resonance compensation is developed and proven to work well through simulation and experiment. Lastly, this thesis discusses the development of a new method to compensate for the gain and phase error obtained in the feedback of the d-axis and q-axis stator flux linkages. Improved accuracy of the measured stator flux linkages will be shown to improve the field oriented controller by obtaining a more accurate measurement of the feedback electromagnetic torque. / Master of Science
8

Enhancing Servo System Performance : Robust Nonlinear Deadbeat Predictive Current Control for Permanent Magnet Synchronous Motors / Förbättring av prestanda för servo system : Robust ickelinjär deadbeat förutsägande strömkontroll för permanenta magnet synkronmotorer

Zhao, Xingyu January 2023 (has links)
The Permanent Magnet Synchronous Motor (PMSM, also known as the servo motor) is a crucial component within robotic servo systems. To optimally respond to the torque demands sent from the high-level motion controller, the PMSM current controller must track the reference with speed and precision. Nevertheless, the operation of servo motors could be compromised due to the nonlinearity of flux linkage and inaccuracies in parameters induced by unpredictable fluctuations in temperature. This Master’s thesis proposes a novel Robust Nonlinear Deadbeat Predictive Current Control (RN-DPCC) scheme to counter these challenges effectively. The nonlinear mappings between flux linkage and current on the dq-axis are established using polynomial fitting based on experimental data. Furthermore, the Nonlinear Deadbeat Predictive Current Control (N-DPCC) is derived using nonlinear feedforward. Meanwhile, Delayed Integral Action (DIA) is introduced as a robustness-enhancing measure for N-DPCC, thus evolving it into the Robust N-DPCC (RN-DPCC). Compared to conventional Integral Action (IA), DIA effectively curtails overshoot triggered by integral error and accelerates the current transient without incorporating additional tunable parameters. Numerical simulations that leverage the mathematical modeling of the converter and nonlinear PMSM are implemented using fundamental blocks in Simulink, which replicates the actual experimental setup employed within the Motor Control Lab at ABB Corporate Research. The effectiveness of employing nonlinear feedforward compensation is confirmed through a comparative analysis of the simulation results from N-DPCC and conventional Deadbeat Predictive Current Control (DPCC). The enhancements in transient response brought about by DIA are demonstrated through a comparison of RNDPCC and N-DPCC with IA. The robustness of RN-DPCC is demonstrated by comparing it with N-DPCC under conditions where parameter inaccuracies are present. / Den permanenta magnet-synkronmotorn (PMSM, även känd som servomotorn) är en avgörande komponent inom robotiserade servosystem. För att optimalt kunna reagera på momentkraven som skickas från högnivårörelsekontrollern måste PMSM-strömregulatorn följa referensen med hastighet och precision. Trots detta kan driften av servomotorer påverkas av ickelinjäriteter i flödeslänkningen och felaktigheter i parametrar som orsakas av oförutsägbara temperaturfluktuationer. Denna magisteravhandling föreslår en ny robust icke-linjär deadbeat-prediktiv strömreglering (RN-DPCC) för att effektivt hantera dessa utmaningar. De icke-linjära avbildningarna mellan flödeslänkning och ström på dq-axeln etableras med hjälp av polynomisk anpassning baserat på experimentella data. Dessutom härleds den ickelinjära deadbeat-prediktiva strömregleringen (N-DPCC) med hjälp av Ickelinjär feedforward. Samtidigt introduceras fördröjd integralåtgärd (DIA) som en robusthetsförbättrande åtgärd för N-DPCC, vilket förvandlar den till Robust N-DPCC (RN-DPCC). Jämfört med konventionell integralåtgärd (IA) minskar DIA effektivt överhäng som utlöses av integralfel och accelererar strömövergången utan att införa ytterligare justerbara parametrar. Numeriska simuleringar som utnyttjar den matematiska modelleringen av omvandlaren och den icke-linjära PMSM implementeras med hjälp av grundläggande block i Simulink, vilket återskapar den faktiska experimentella uppställningen som används i Motor Control Lab vid ABB Corporate Research. Effektiviteten i att använda icke-linjär framåtmatningskompensation bekräftas genom en jämförande analys av simulationsresultaten från N-DPCC och konventionell deadbeat-prediktiv strömreglering (DPCC). Förbättringarna i transientrespons som DIA medför demonstreras genom en jämförelse av RN-DPCC och NDPCC med IA. Robustheten hos RN-DPCC demonstreras genom att jämföra den med N-DPCC under förhållanden där parameterfel förekommer.
9

Development of PMSM and drivetrain models in MATLAB/Simulink for Model Based Design / Utveckling av PMSM och drivlinemodeller i MATLAB / Simulink för modellbaserad design

Sivaraman, Gokul January 2021 (has links)
When developing three-phase drives for Electric Vehicles (EVs), it is essential to verify the controller design. This will help in understanding how fast and accurately the torque of the motor can be controlled. In order to do this, it is always better to test the controller using the software version of the motor or vehicle drivetrain than using actual hardware as it could lead to component damage when replicating extreme physical behavior. In this thesis, plant modelling of Permanent Magnet Synchronous Machine (PMSM) and vehicle drivetrain in MATLAB/Simulink for Model Based Design (MBD) is presented. MBD is an effective method for controller design that, if adopted can lead to cost savings of 25%-30% and time savings of 35%-40% (according to a global study by Altran Technologies, the chair of software and systems engineering and the chair of Information Management of the University of Technology in Munich) [1]. The PMSM plant models take effects like magnetic saturation, cross- coupling, spatial harmonics and temperature into account. Two PMSM models in d-q frame based on flux and inductance principles were implemented. Flux, torque maps from Finite Element Analysis (FEA) and apparent inductance from datasheets were used as inputs to the flux- and inductance-based models, respectively. The FEA of PMSM was done using COMSOL Multiphysics. The PMSM model results were compared with corresponding FEA simulated results for verification. A comparison of these PMSM models with conventional low fidelity models has also been done to highlight the impact of inclusion of temperature and spatial harmonics. These motor models can be combined with an inverter plant model and a controller can be developed for the complete model. Low frequency oscillations of drivetrain in EVs lead to vibrations which can cause discomfort and torsional stresses. In order to control these oscillations, an active oscillation damping controller can be implemented. For implementation of this control, a three-mass mechanical plant model of drivetrain with an ABS (Anti-lock Braking System) wheel speed sensor has been developed in this thesis. Analysis of the model transfer function to obtain the pole zero maps was performed. This was used to observe and verify presence of low frequency oscillations in the drivetrain. In order to include the effects of ABS wheel speed sensor and CAN communication, a model was developed for the sensor. / Testning av regulatorernas inställningar med hänsyn till snabbhet och noggrannhet i momentreglering är avgörande i trefasiga drivsystem för elektriska fordon. Oftast är det bättre att simulera i stället för att utföra experimentella tester där komponenter kan skadas på grund av fysisk stress. Detta kallas för Model Based Design (MBD). MBD är an effektiv metod för utformningen av styrningen som kan leda till kostnadsbesparingar på 25%-30% och tidsbesparingar på 35%-40% enligt en studie från Altran Technologies i samarbete med Tekniska universitet i München, TUM. Detta examensarbete behandlar en modell för en synkronmaskin med permanentmagneter (PMSM) samt en modell för drivlinan utvecklad i Matlab/Simulink för MBD. PMSMs modellen inkluderar magnetisk mättnad och tvärkoppling, MMF övervågor och temperatur. Två PMSM modeller har utvecklats. Den första baseras på magnetiskt flöde som erhålls från finita element beräkningar i COMSOL Multiphysics medan den andra bygger på induktanser givna från datablad. En jämförelse av dessa PMSM-modeller med konventionella low fidelity-modeller har också gjorts för att illustrera påverkan temperaturberoende och MMF övervågor. Modellerna kan kombineras med en växelriktarmodell för att utveckla en hel styrenhet. Lågfrekventa oscillationer i drivlinan leder till vibrationer som kan orsaka vridspänningar och försämra komforten i elfordonet. En aktiv dämpningsregulator kan implementeras för att kontrollera spänningarna men en mekanisk drivlinemodell med tre massor och en ABS (anti-lock braking system) hastighetssensor behövs. Den mekaniska modellen har implementerats och analyserats även beaktande en modell för en CAN kommunikationskanal. Oscillationer med låg frekvens kunde observeras i modellen.

Page generated in 0.0819 seconds