• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model based design of an expiratory valve and voice-coil actuator and evaluation of complete expiratory system performance with a PI controller

KIESI, MIKKO, AXELSSON SJÖBLOM, ROBERT January 2016 (has links)
Mechanical ventilators are devices in critical care to assist breathing in case of expiratory dysfunction. The expiratory valve is a critical component to the ventilator as it controls the pressure in the patient’s lungs. The design process of a new expiratory valve assembly is a time consuming one due to the wide range of possible design solutions both the voice-coil actuators and membrane valves typically used in ventilators. This thesis evaluates the possibility of creating and using analytical models for model based development to speed up the early design phases of a expiratory valve assembly. The main components, voice-coil actuator and membrane valve are modelled separately and experimentally verified. A complete expiratory system model and hardware-in-the-loop test setup are constructed in order to explore how well can the dynamic properties and control performance of valve assembly be predicted. Finally various questions in the valve assembly design are explored and a new design is proposed to demonstrate the capabilities of the model based approach. The resulting voice-coil and membrane valve models can be considered accurate enough for fast exploration of the design space, as an error rate below 10% is reached without manual tuning for each design. / Mekaniska ventilatorer är en utrustning inom intensivvården för assisterad andning för patienter med nedsatt andningsförmåga. Utandningsventilen är en kritisk komponent till ventilatorn då den kontrollerar lungtrycket hos patienten. Design processen för en ny utandningsventil är en tidskrävande process mycket på grund av den mängd olika design möjligheter som kan utforskas för både talspole aktuatorn samt membran ventilen som oftast används i ventilatorerna. I detta examensarbete utforskades möjligheterna till att skapa och använda analytiska modeller för modellbaserad utveckling för att accelerera de tidiga design stadierna för en utandningsventil. Huvudkomponenterna, talspole aktuatorn och membran ventilen är modellerade separat och experimentellt verifierade. En fullständig modell för hela utandningssystemet samt en hardware-in-the-loop test plattform är konstruerad för att utforska hur väl de dynamiska egenskaperna samt kontroll prestandan för en utandningsventil kan prediceras. Slutligen utforskas diverse frågor angående ventil designen och en ny design föreslås för att demonstrera möjligheterna med en modellbaserad metod. Den slutliga modellen för både talspole aktuatorn och membran ventilen kan betraktas som tillräcklig precisa för snabb utforskning inom de olika design möjligheterna, då en felprocent under 10% är uppnådd utan manuell finjustering för varje design.
2

Development of PMSM and drivetrain models in MATLAB/Simulink for Model Based Design / Utveckling av PMSM och drivlinemodeller i MATLAB / Simulink för modellbaserad design

Sivaraman, Gokul January 2021 (has links)
When developing three-phase drives for Electric Vehicles (EVs), it is essential to verify the controller design. This will help in understanding how fast and accurately the torque of the motor can be controlled. In order to do this, it is always better to test the controller using the software version of the motor or vehicle drivetrain than using actual hardware as it could lead to component damage when replicating extreme physical behavior. In this thesis, plant modelling of Permanent Magnet Synchronous Machine (PMSM) and vehicle drivetrain in MATLAB/Simulink for Model Based Design (MBD) is presented. MBD is an effective method for controller design that, if adopted can lead to cost savings of 25%-30% and time savings of 35%-40% (according to a global study by Altran Technologies, the chair of software and systems engineering and the chair of Information Management of the University of Technology in Munich) [1]. The PMSM plant models take effects like magnetic saturation, cross- coupling, spatial harmonics and temperature into account. Two PMSM models in d-q frame based on flux and inductance principles were implemented. Flux, torque maps from Finite Element Analysis (FEA) and apparent inductance from datasheets were used as inputs to the flux- and inductance-based models, respectively. The FEA of PMSM was done using COMSOL Multiphysics. The PMSM model results were compared with corresponding FEA simulated results for verification. A comparison of these PMSM models with conventional low fidelity models has also been done to highlight the impact of inclusion of temperature and spatial harmonics. These motor models can be combined with an inverter plant model and a controller can be developed for the complete model. Low frequency oscillations of drivetrain in EVs lead to vibrations which can cause discomfort and torsional stresses. In order to control these oscillations, an active oscillation damping controller can be implemented. For implementation of this control, a three-mass mechanical plant model of drivetrain with an ABS (Anti-lock Braking System) wheel speed sensor has been developed in this thesis. Analysis of the model transfer function to obtain the pole zero maps was performed. This was used to observe and verify presence of low frequency oscillations in the drivetrain. In order to include the effects of ABS wheel speed sensor and CAN communication, a model was developed for the sensor. / Testning av regulatorernas inställningar med hänsyn till snabbhet och noggrannhet i momentreglering är avgörande i trefasiga drivsystem för elektriska fordon. Oftast är det bättre att simulera i stället för att utföra experimentella tester där komponenter kan skadas på grund av fysisk stress. Detta kallas för Model Based Design (MBD). MBD är an effektiv metod för utformningen av styrningen som kan leda till kostnadsbesparingar på 25%-30% och tidsbesparingar på 35%-40% enligt en studie från Altran Technologies i samarbete med Tekniska universitet i München, TUM. Detta examensarbete behandlar en modell för en synkronmaskin med permanentmagneter (PMSM) samt en modell för drivlinan utvecklad i Matlab/Simulink för MBD. PMSMs modellen inkluderar magnetisk mättnad och tvärkoppling, MMF övervågor och temperatur. Två PMSM modeller har utvecklats. Den första baseras på magnetiskt flöde som erhålls från finita element beräkningar i COMSOL Multiphysics medan den andra bygger på induktanser givna från datablad. En jämförelse av dessa PMSM-modeller med konventionella low fidelity-modeller har också gjorts för att illustrera påverkan temperaturberoende och MMF övervågor. Modellerna kan kombineras med en växelriktarmodell för att utveckla en hel styrenhet. Lågfrekventa oscillationer i drivlinan leder till vibrationer som kan orsaka vridspänningar och försämra komforten i elfordonet. En aktiv dämpningsregulator kan implementeras för att kontrollera spänningarna men en mekanisk drivlinemodell med tre massor och en ABS (anti-lock braking system) hastighetssensor behövs. Den mekaniska modellen har implementerats och analyserats även beaktande en modell för en CAN kommunikationskanal. Oscillationer med låg frekvens kunde observeras i modellen.

Page generated in 0.0577 seconds