121 |
Stability-constrained Aerodynamic Shape Optimization with Applications to Flying WingsMader, Charles 30 August 2012 (has links)
A set of techniques is developed that allows the incorporation of flight dynamics metrics
as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability
derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a
full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability
derivatives. Based on the characteristics of the two methods, the time-spectral technique
is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization
framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the
airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
|
122 |
CanX-4/-5: Mission Simulation, Intersatellite Separation System, Hardware Integration and TestingUrbanek, Jakub 03 January 2012 (has links)
The CanX-4/-5 mission currently under development at the Space Flight Laboratory will demonstrate sub-metre formation control in four separate formations consisting of two
nanosatellites. Formation maintenance is performed using a propulsion payload providing one axis of thrust, resulting in frequent slewing to meet thrust targets. Navigation is GPS dependent, with both satellites equipped with a receiver and antenna pair. Presented is a mission simulation developed for evaluating formation flying algorithm performance and the effects of frequent slewing on GPS coverage. CanX-4 and CanX-5 will be joined for commissioning prior to commencing formation flying via a mechanism, the Intersatellite Separation System. Details
regarding the performance testing and troubleshooting of the system are described. Integration and testing of CanX-4/-5 flight hardware into a functional “FlatSat” is presented. Additionally, a description of satellite operations for two nanosatellites is given, with an emphasis on the relevance to the work performed for the CanX-4/-5 mission.
|
123 |
Quantitative feedback design and construction of a two by two system with large disturbances.Boje, Edward Sidney. January 1989 (has links)
The quantitative feedback theory (QFT) of Horowitz is theoretically well developed for multivariable systems but there is not sufficient knowledge on its
application to practical problems. A "flying machine" consisting of an airframe
with two independently controlled sets of wings has been designed and
constructed as a 2-input 2-output control problem. The airframe is constrained
to move vertically on guide wires and to rotate about a pivot. Air flow over the
wings is provided by two 7.SkW fans operated without any attempt at providing
non-turbulent flow. The arrangement of the wings is such that in open loop, the
dynamic behaviour of the airframe from the rear set of wings to the height is
non-minimum phase. Additionally, the airframe is unstable for some flight
conditions. This uncertain, non-linear and highly disturbed plant provides an
ideal practical environment in which to test controller design theory. The construction, modelling, parameter estimation and simulation of the flying
machine is described. Three different controller structures are disGussed, with
actual controller designs arrived at from QFT understanding. The controller
designs for the flying machine take into account parameter uncertainty and trade off disturbance attenuation against rate and amplitude saturation at the wing angle inputs. / Thesis (Ph.D.)-University of Natal, Durban, 1989.
|
124 |
CanX-4/-5: Mission Simulation, Intersatellite Separation System, Hardware Integration and TestingUrbanek, Jakub 03 January 2012 (has links)
The CanX-4/-5 mission currently under development at the Space Flight Laboratory will demonstrate sub-metre formation control in four separate formations consisting of two
nanosatellites. Formation maintenance is performed using a propulsion payload providing one axis of thrust, resulting in frequent slewing to meet thrust targets. Navigation is GPS dependent, with both satellites equipped with a receiver and antenna pair. Presented is a mission simulation developed for evaluating formation flying algorithm performance and the effects of frequent slewing on GPS coverage. CanX-4 and CanX-5 will be joined for commissioning prior to commencing formation flying via a mechanism, the Intersatellite Separation System. Details
regarding the performance testing and troubleshooting of the system are described. Integration and testing of CanX-4/-5 flight hardware into a functional “FlatSat” is presented. Additionally, a description of satellite operations for two nanosatellites is given, with an emphasis on the relevance to the work performed for the CanX-4/-5 mission.
|
125 |
A NEW PIEZOELECTRIC MICROACTUATOR WITH TRANSVERSE AND LATERAL CONTROL OF HEAD POSITIONING SYSTEMS FOR HIGH DENSITY HARD DISK DRIVESHan, Younghee 01 January 2005 (has links)
In high density magnetic hard disk drives, both fast track seeking and extremely accurate positioning of the read/write head are required. A new piezoelectric microactuator with transverse and lateral control of the head positioning system for high density hard disk drives is proposed. First, the structure of the new piezoelectric microactuator is illustrated. Design of the new microactuator is based on the axial deformation of piezoelectric elements for lateral motion and the bimorph actuation of piezoelectric elements for transverse motion. Next, a mathematical model of the microactuator system is defined. Static properties associated with the displacement of the system are evaluated and then dynamic system equations of the system are evaluated. Frequency response of the system is studied based on the dynamic system equations of the actuator system. Dynamic properties of the system with a variety of system parameters are evaluated. Finally, the controller design for the actuator is presented. Simulation results show that the new actuator achieves a maximum stroke of displacement of more than 0.2m with servo bandwidth of more than 5 kHz in the lateral direction and the flying height is decreased to less than 6 nm with resonance frequency of more than 100 kHz under the 0.5 % damping assumption. The new piezoelectric microactuator improves performance of high density hard disk drives by increasing servo bandwidth and decreasing flying height.
|
126 |
Stability-constrained Aerodynamic Shape Optimization with Applications to Flying WingsMader, Charles 30 August 2012 (has links)
A set of techniques is developed that allows the incorporation of flight dynamics metrics
as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability
derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a
full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability
derivatives. Based on the characteristics of the two methods, the time-spectral technique
is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization
framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the
airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
|
127 |
From river banks to shearing sheds: Thirty years with flying arts 1971 - 2001England, Marilyn Irene Unknown Date (has links)
No description available.
|
128 |
From river banks to shearing sheds: Thirty years with flying arts 1971 - 2001England, Marilyn Irene Unknown Date (has links)
No description available.
|
129 |
From river banks to shearing sheds: Thirty years with flying arts 1971 - 2001England, Marilyn Irene Unknown Date (has links)
No description available.
|
130 |
From river banks to shearing sheds: Thirty years with flying arts 1971 - 2001England, Marilyn Irene Unknown Date (has links)
No description available.
|
Page generated in 0.0534 seconds