111 |
Communication Loss Management and Analysis for Multiple Spacecraft Formation Flying MissionsElnabelsya, Mohamed 31 December 2010 (has links)
This thesis presents a method for managing periods of communication loss between multiple spacecraft in formation flying (MSFF), and analyzes the effects of this method on the stability of the formation keeping control algorithm. The controller of interest in this work in an adaptive nonlinear controller, where synchronization is also incorporated to force the position tracking errors to converge to zero at the same rate. The communication loss compensation technique proposed in this thesis is to use the previously communicated data in lieu of the lost data, which is an effective and computationally-efficient technique that is advantageous for small satellites. The performance parameter of interest in this research is the maximum rate of communication loss that an MSFF system can withstand before going unstable, and this is analyzed theoretically and through simulations. Finally, experiments involving multiple robots in formation with communication loss are conducted, and the results are presented.
|
112 |
Earning their wings : British pilot training, 1912-1918Morley, Robert Michael 15 December 2006
This thesis outlines the development of Royal Flying Corpss (RFC) training programme from 1912 to 1918. It is based largely on archival sources from the National Archives and Imperial War Museum (London) and the Bundesarchiv (Freiburg, Germany). It considers the changes to the theoretical, practical and in-flight instruction methods used by the Royal Flying Corps. Within this discussion it analyzes the difficulties encountered by the RFC while attempting to train their aviators. It argues that initially the training programme was a detriment to British war effort in the air, as many pilots entered combat without sufficient training. This, however, was not the result of a flawed training regimen. Actually, the RFC training programme remained in tune with the realities of the war over the Western Front. The problems encountered by the RFC were largely the result of the circumvention or ignorance of the training programme by instructors. Nevertheless, British pilot training improved as the war went on both theoretically and practically and ultimately became more efficient than the training programmes in France and Germany. It pays special attention to the use of dual-control aircraft for the purposes of training and the positive effects these changes had on the British war effort. It also touches on some thematic issues such as gender, individuality, modernity and technology.
|
113 |
Satellite Formation Design in Orbits of High Eccentricity for Missions with Performance Criteria Specified over a Region of InterestRoscoe, Christopher 14 March 2013 (has links)
Several methods are presented for the design of satellite formations for science missions in high-eccentricity reference orbits with quantifiable performance criteria specified throughout only a portion the orbit, called the Region of Interest (RoI). A modified form of the traditional average along-track drift minimization condition is introduced to account for the fact that performance criteria are only specified within the RoI, and a robust formation design algorithm (FDA) is defined to improve performance in the presence of formation initialization errors. Initial differential mean orbital elements are taken as the design variables and the Gim-Alfriend state transition matrix (G-A STM) is used for relative motion propagation. Using mean elements and the G-A STM allows for explicit inclusion of J2 perturbation effects in the design process. The methods are applied to the complete formation design problem of the NASA Magnetospheric Multiscale (MMS) mission and results are verified using the NASA General Mission Analysis Tool (GMAT). Since satellite formations in high-eccentricity orbits will spend long times at high altitude, third-body perturbations are an important design consideration as well. A detailed analytical analysis of third-body perturbation effects on satellite formations is also performed and averaged dynamics are derived for the particular case of the lunar perturbation. Numerical results of the lunar perturbation analysis are obtained for the example application of the MMS mission and verified in GMAT.
|
114 |
Cabin environment and air quality in civil transport aircraftZhou, Weiguo 01 1900 (has links)
The cabin environment of a commercial aircraft, including cabin layout and the quality of air supply, is crucial to the airline operators. These aspects directly affect the passengers’ experience and willing to travel. This aim of this thesis is to design the cabin layout for flying wing aircraft as part of cabin environment work, followed by the air quality work, which is to understand what effect the ECS can have in terms of cabin air contamination.
The project, initially, focuses on the cabin layout, including passenger cabin configuration, seat arrangement and its own size due to the top requirements, of a conventional aircraft and further into that of a flying wing aircraft. The cabin work in respect of aircraft conceptual design is discussed and conducted by comparing different design approaches. Before the evaluation of cabin air quality, an overall examination of the main ECS components involved in the contaminants access will be carried on and, therefore, attempt to discover how these components influence the property of the concerned contaminants. By case study in the B767 ECS, there are some comments and discussions regarding the relationship between the cabin air contaminations and the passing by ambient environment. The thesis ends up with a conclusion explaining whether or not the contaminated air enters the occupants’ compartments on aircraft and proposing some approaches and engineering solutions to the continue research.
|
115 |
Preliminary fuselage structural configuration of a flying-wing type airlineCheng, Yun 01 1900 (has links)
The flying-wing is a type of configuration which is a tailless airplane accommodating all of its parts within the outline of a single airfoil. Theoretically, it has the most aerodynamic efficiency. The fuel consumption can be more efficient than the existed conventional airliner. It seems that this configuration can achieve the above mentioned requirements.
According to these outstanding advantages, many aircraft companies did a great deal of projects on the flying-wing concept. However, the application was only for sport and military use; for airliner, none of them entered production.
FW-11 is a flying-wing configuration airliner which is a design cooperation between Cranfield University and Aviation Industry Corporation of China (AVIC). Aiming the spatial economic and environmental needs, this 200-seat airliner would attract attention from airline companies for cost saving and environmental protection.
Before start, this program is designated for a new generation commercial aircraft to compete with the existing same capability airliner, such as Airbus A320 and Boeing 767. As the first team of this program, the aim is to finish the conceptual design and prepare the relevant document for next two teams that will perform preliminary and detail design.
As a member of FW-11 program and as part of the GDP, the author has been through the four conceptual design stages: engine manufacturers, aircraft family issues, structure design and the establishment of 3-D CAD model.
The aim of IRP study is to focus on the initial fuselage design.
|
116 |
Longitudinal control laws design for a flying wing aircraftZhu, Yan. 02 1900 (has links)
This research is concerned with the flight dynamic, pitch flight control and flying
qualities assessment for the reference BWB aircraft. It aims to develop the
longitudinal control laws which could satisfy the flying and handing qualities
over the whole flight envelope with added consideration of centre of gravity (CG)
variation.
In order to achieve this goal, both the longitudinal stability augmentation system
(SAS) and autopilot control laws are studied in this thesis. Using the pole
placement method, two sets of local Linear-Time-Invariant (LTI) SAS controllers
are designed from the viewpoints of flying and handing qualities assessment
and wind disturbance checking. The global gain schedule is developed with the
scheduling variable of dynamic pressure to transfer gains smoothly between
these two trim points. In addition, the poles movement of short period mode with
the varying CG position are analysed, and some approaches of control system
design to address the problem of reduced stability induced by CG variation are
discussed as well. To achieve the command control for the aircraft, outer loop
autopilot both pitch attitude hold and altitude hold are implemented by using the
root locus method.
By the existing criteria in MIL-F-8785C specifications being employed to assess
the augmented aircraft response, the SAS linear controller with automatic
changing gains effectively improve the stability characteristic for the reference
BWB aircraft over the whole envelope. Hence, the augmented aircraft equals to
a good characteristic controlled object for the outer loop or command path
design, which guarantee the satisfactory performance of command control for
the BWB aircraft.
The flight control law for the longitudinal was completed with the SAS controller
and autopilot design. In particular, the SAS was achieved with Level 1 flying and
handing qualities, meanwhile the autopilot system was applied to obtain a
satisfactory pitch attitude and altitude tracking performance.
|
117 |
Optimal design of a flying-wing aircraft inner wing structure configurationHuang, Haidong 01 1900 (has links)
Flying-wing aircraft are considered to have great advantages and potentials in
aerodynamic performance and weight saving. However, they also have many
challenges in design. One of the biggest challenges is the structural design of
the inner wing (fuselage). Unlike the conventional fuselage of a tube
configuration, the flying-wing aircraft inner wing cross section is limited to a
noncircular shape, which is not structurally efficient to resist the internal
pressure load. In order to solve this problem, a number of configurations have
been proposed by other designers such as Multi Bubble Fuselage (MBF),
Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS), Vaulted Shell
Honeycomb Core (VLHC), Flat Sandwich Shell Honeycomb Core (FLHC), Y
Braced Box Fuselage and the modified fuselage designed with Y brace
replaced by vaulted shell configurations. However all these configurations still
inevitably have structural weight penalty compared with optimal tube fuselage
layout. This current study intends to focus on finding an optimal configuration
with minimum structural weight penalty for a flying-wing concept in a preliminary
design stage.
A new possible inner wing configuration, in terms of aerodynamic shape and
structural layout, was proposed by the author, and it might be referred as
‘Wave-Section Configuration’. The methodologies of how to obtain a structurally
efficient curvature of the shape, as well as how to conduct the initial sizing were
incorporated.
A theoretical analysis of load transmission indicated that the Wave-Section
Configuration is feasible, and this was further proved as being practical by FE
analysis. Moreover, initial FE analysis and comparison of the Wave-Section
Configuration with two other typical configurations, Multi Bubble Fuselage and
Conventional Wing, suggested that the Wave-Section Configuration is an
optimal design in terms of weight saving. However, due to limitations of the
author’s research area, influences on aerodynamic performances have not yet
been taken into account.
|
118 |
Earning their wings : British pilot training, 1912-1918Morley, Robert Michael 15 December 2006 (has links)
This thesis outlines the development of Royal Flying Corpss (RFC) training programme from 1912 to 1918. It is based largely on archival sources from the National Archives and Imperial War Museum (London) and the Bundesarchiv (Freiburg, Germany). It considers the changes to the theoretical, practical and in-flight instruction methods used by the Royal Flying Corps. Within this discussion it analyzes the difficulties encountered by the RFC while attempting to train their aviators. It argues that initially the training programme was a detriment to British war effort in the air, as many pilots entered combat without sufficient training. This, however, was not the result of a flawed training regimen. Actually, the RFC training programme remained in tune with the realities of the war over the Western Front. The problems encountered by the RFC were largely the result of the circumvention or ignorance of the training programme by instructors. Nevertheless, British pilot training improved as the war went on both theoretically and practically and ultimately became more efficient than the training programmes in France and Germany. It pays special attention to the use of dual-control aircraft for the purposes of training and the positive effects these changes had on the British war effort. It also touches on some thematic issues such as gender, individuality, modernity and technology.
|
119 |
Dynamics and real-time optimal control of satellite attitude and satellite formation systemsYan, Hui 30 October 2006 (has links)
In this dissertation the solutions of the dynamics and real-time optimal control of
magnetic attitude control and formation flying systems are presented. In magnetic
attitude control, magnetic actuators for the time-optimal rest-to-rest maneuver with a
pseudospectral algorithm are examined. The time-optimal magnetic control is bang-bang
and the optimal slew time is about 232.7 seconds. The start time occurs when the
maneuver is symmetric about the maximum field strength. For real-time computations,
all the tested samples converge to optimal solutions or feasible solutions. We find the
average computation time is about 0.45 seconds with the warm start and 19 seconds with
the cold start, which is a great potential for real-time computations. Three-axis magnetic
attitude stabilization is achieved by using a pseudospectral control law via the receding
horizon control for satellites in eccentric low Earth orbits. The solutions from the
pseudospectral control law are in excellent agreement with those obtained from the
Riccati equation, but the computation speed improves by one order of magnitude. Numerical solutions show state responses quickly tend to the region where the attitude
motion is in the steady state.
Approximate models are often used for the study of relative motion of formation
flying satellites. A modeling error index is introduced for evaluating and comparing the
accuracy of various theories of the relative motion of satellites in order to determine the
effect of modeling errors on the various theories. The numerical results show the
sequence of the index from high to low should be Hill's equation, non- J2, small
eccentricity, Gim-Alfriend state transition matrix index, with the unit sphere approach
and the Yan-Alfriend nonlinear method having the lowest index and equivalent
performance. A higher order state transition matrix is developed using unit sphere
approach in the mean elements space. Based on the state transition matrix analytical
control laws for formation flying maintenance and reconfiguration are proposed using
low-thrust and impulsive scheme. The control laws are easily derived with high
accuracy. Numerical solutions show the control law works well in real-time
computations.
|
120 |
Enabling collaborative behaviors among cubesatsBrowne, Daniel C. 08 July 2011 (has links)
Future spacecraft missions are trending towards the use of distributed systems or fractionated spacecraft. Initiatives such as DARPA's System F6 are encouraging the satellite community to explore the realm of collaborative spacecraft teams in order to achieve lower cost, lower risk, and greater data value over the conventional monoliths in LEO today. Extensive research has been and is being conducted indicating the advantages of distributed spacecraft systems in terms of both capability and cost. Enabling collaborative behaviors among teams or formations of pico-satellites requires technology development in several subsystem areas including attitude determination and control subsystems, orbit determination and maintenance capabilities, as well as a means to maintain accurate knowledge of team members' position and attitude. All of these technology developments desire improvements (more specifically, decreases) in mass and power requirements in order to fit on pico-satellite platforms such as the CubeSat.
In this thesis a solution for the last technology development area aforementioned is presented. Accurate knowledge of each spacecraft's state in a formation, beyond improving collision avoidance, provides a means to best schedule sensor data gathering, thereby increasing power budget efficiency. Our solution is composed of multiple software and hardware components. First, finely-tuned flight system software for the maintaining of state knowledge through equations of motion propagation is developed. Additional software, including an extended Kalman filter implementation, and commercially available hardware components provide a means for on-board determination of both orbit and attitude. Lastly, an inter-satellite communication message structure and protocol enable the updating of position and attitude, as required, among team members. This messaging structure additionally provides a means for payload sensor and telemetry data sharing. In order to satisfy the needs of many different missions, the software has the flexibility to vary the limits of accuracy on the knowledge of team member position, velocity, and attitude. Such flexibility provides power savings for simpler applications while still enabling missions with the need of finer accuracy knowledge of the distributed team's state.
Simulation results are presented indicating the accuracy and efficiency of formation structure knowledge through incorporation of the described solution. More importantly, results indicate the collaborative module's ability to maintain formation knowledge within bounds prescribed by a user. Simulation has included hardware-in-the-loop setups utilizing an S-band transceiver. Two "satellites" (computers setup with S-band transceivers and running the software components of the collaborative module) are provided GPS inputs comparable to the outputs provided from commercial hardware; this partial hardware-in-the-loop setup demonstrates the overall capabilities of the collaborative module.
Details on each component of the module are provided. Although the module is designed with the 3U CubeSat framework as the initial demonstration platform, it is easily extendable onto other small satellite platforms. By using this collaborative module as a base, future work can build upon it with attitude control, orbit or formation control, and additional capabilities with the end goal of achieving autonomous clusters of small spacecraft.
|
Page generated in 0.0502 seconds