• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conceptual design for a laminar-flying-wing aircraft

Saeed, Tariq Issam January 2012 (has links)
The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. In addition to boundary layer laminarisation (utilising distributed suction) and limited sweep, a standing-height passenger cabin and subcritical aerofoil flow are imposed as requirements. Subject to these constraints, this research aims to: provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty; suggesting there is little benefit in trying to maintain an optimal suction distribution through increased subsurface-chamber complexity. For representative parameter values, the minimum power associated with boundary-layer losses alone contributes some 80% - 90% of the total power requirement. To identify the viable basic design specification, a high-level exploration of the laminar-flying-wing design space is performed, with an emphasis above all on aerodynamic efficiency. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 10[superscript 6] m[superscript -1], is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. The benefit of laminarisation is manifested in a high lift-to-drag ratio, but the wing loading is low, and the structural efficiency and gust response are thus likely to be relatively poor. On the basis of this specification, a detailed conceptual design is undertaken. A 220-passenger laminar-flying-wing concept, propelled by three turboprop engines, with a cruise range of 9000 km is developed. The estimated fuel burn is 13.9 g/pax.km. For comparison, a conventional aircraft, propelled by four turboprop engines, with a high-mounted, unswept, wing is designed for the same mission specification and propulsion characteristics, and is shown to have a fuel burn of 15.0 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency, due to extreme differences between takeoff and cruising requirements, and is much heavier. The laminar flying wing proposed in this thesis falls short of the performance improvements expected of the concept, and is not worth the development effort. It is therefore proposed that research efforts either be focussed on improving the engine efficiency, or switching to a low aspect ratio, high sweep, design configuration.
2

Cabin environment and air quality in civil transport aircraft

Zhou, Weiguo 01 1900 (has links)
The cabin environment of a commercial aircraft, including cabin layout and the quality of air supply, is crucial to the airline operators. These aspects directly affect the passengers’ experience and willing to travel. This aim of this thesis is to design the cabin layout for flying wing aircraft as part of cabin environment work, followed by the air quality work, which is to understand what effect the ECS can have in terms of cabin air contamination. The project, initially, focuses on the cabin layout, including passenger cabin configuration, seat arrangement and its own size due to the top requirements, of a conventional aircraft and further into that of a flying wing aircraft. The cabin work in respect of aircraft conceptual design is discussed and conducted by comparing different design approaches. Before the evaluation of cabin air quality, an overall examination of the main ECS components involved in the contaminants access will be carried on and, therefore, attempt to discover how these components influence the property of the concerned contaminants. By case study in the B767 ECS, there are some comments and discussions regarding the relationship between the cabin air contaminations and the passing by ambient environment. The thesis ends up with a conclusion explaining whether or not the contaminated air enters the occupants’ compartments on aircraft and proposing some approaches and engineering solutions to the continue research.
3

Optimal design of a flying-wing aircraft inner wing structure configuration

Huang, Haidong 01 1900 (has links)
Flying-wing aircraft are considered to have great advantages and potentials in aerodynamic performance and weight saving. However, they also have many challenges in design. One of the biggest challenges is the structural design of the inner wing (fuselage). Unlike the conventional fuselage of a tube configuration, the flying-wing aircraft inner wing cross section is limited to a noncircular shape, which is not structurally efficient to resist the internal pressure load. In order to solve this problem, a number of configurations have been proposed by other designers such as Multi Bubble Fuselage (MBF), Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS), Vaulted Shell Honeycomb Core (VLHC), Flat Sandwich Shell Honeycomb Core (FLHC), Y Braced Box Fuselage and the modified fuselage designed with Y brace replaced by vaulted shell configurations. However all these configurations still inevitably have structural weight penalty compared with optimal tube fuselage layout. This current study intends to focus on finding an optimal configuration with minimum structural weight penalty for a flying-wing concept in a preliminary design stage. A new possible inner wing configuration, in terms of aerodynamic shape and structural layout, was proposed by the author, and it might be referred as ‘Wave-Section Configuration’. The methodologies of how to obtain a structurally efficient curvature of the shape, as well as how to conduct the initial sizing were incorporated. A theoretical analysis of load transmission indicated that the Wave-Section Configuration is feasible, and this was further proved as being practical by FE analysis. Moreover, initial FE analysis and comparison of the Wave-Section Configuration with two other typical configurations, Multi Bubble Fuselage and Conventional Wing, suggested that the Wave-Section Configuration is an optimal design in terms of weight saving. However, due to limitations of the author’s research area, influences on aerodynamic performances have not yet been taken into account.
4

Effects of engine placement and morphing on nonlinear aeroelastic behavior of flying wing aircraft

Mardanpour, Pezhman 13 January 2014 (has links)
Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). The analysis was validated against published results for divergence and flutter of swept wings and found to be in excellent agreement with the experimental results of the classical wing of Goland. Moreover, modal frequencies and damping obtained for the Goland wing were found in excellent agreement with published results based on a new continuum-based unsteady aerodynamic formulation. Gravity for this class of wings plays an important role in flutter characteristics. In the absence of aerodynamic and gravitational forces and without an engine, the kinetic energy of the first two modes are calculated. Maximum and minimum flutter speed locations coincide with the area of minimum and maximum kinetic energy of the second bending and torsion modes. Time-dependent dynamic behavior of a turboshaft engine (JetCat SP5) is simulated with a transient engine model and the nonlinear aeroelastic response of the wing to the engine's time-dependent thrust and dynamic excitation is presented. Below the flutter speed, at the wing tip and behind the elastic axis, the impulse engine excitation leads to a stable limit cycle oscillation; and for the ramp kind of excitation, beyond the flutter speed, at 75% span, behind the elastic axis, it produces chaotic oscillation of the wing. Both the excitations above the flutter speed are stabilized, on the inboard portion of the wing. Effects of engine placement and sweep on flutter characteristics of a backswept flying wing resembling the Horten IV are explored using NATASHA. This aircraft exhibits a non-oscillatory yawing instability, expected in aircraft with neither a vertical tail nor yaw control. More important, however, is the presence of a low frequency “body-freedom flutter” mode. The aircraft center of gravity was held fixed during the study, which allowed aircraft controls to trim similarly for each engine location, and minimized flutter speed variations along the inboard span. Maximum flutter speed occurred for engine placement just outboard of 60% span with engine center of gravity forward of the elastic axis. The body-freedom flutter mode was largely unaffected by the engine placement except for cases in which the engine is placed at the wing tip and near the elastic axis. In the absence of engines, aerodynamics, and gravity, a region of minimum kinetic energy density for the first symmetric free-free bending mode is also near the 60% span. A possible relationship between the favorable flutter characteristics obtained by placing the engines at that point and the region of minimum kinetic energy is briefly explored. Effects of multiple engine placement on a similar type of aircraft are studied. The results showed that multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60% to 70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed at these regions if engines are placed forward of the elastic axis. High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this thesis requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. In this study solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA was extended to include the ability to simulate morphing of the aircraft into a “Z” configuration. Because of the “long endurance” feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.

Page generated in 0.0798 seconds