• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cabin environment and air quality in civil transport aircraft

Zhou, Weiguo 01 1900 (has links)
The cabin environment of a commercial aircraft, including cabin layout and the quality of air supply, is crucial to the airline operators. These aspects directly affect the passengers’ experience and willing to travel. This aim of this thesis is to design the cabin layout for flying wing aircraft as part of cabin environment work, followed by the air quality work, which is to understand what effect the ECS can have in terms of cabin air contamination. The project, initially, focuses on the cabin layout, including passenger cabin configuration, seat arrangement and its own size due to the top requirements, of a conventional aircraft and further into that of a flying wing aircraft. The cabin work in respect of aircraft conceptual design is discussed and conducted by comparing different design approaches. Before the evaluation of cabin air quality, an overall examination of the main ECS components involved in the contaminants access will be carried on and, therefore, attempt to discover how these components influence the property of the concerned contaminants. By case study in the B767 ECS, there are some comments and discussions regarding the relationship between the cabin air contaminations and the passing by ambient environment. The thesis ends up with a conclusion explaining whether or not the contaminated air enters the occupants’ compartments on aircraft and proposing some approaches and engineering solutions to the continue research.
2

Continuing airworthiness policy and application to flying crane aircraft

Gao, Fei 01 1900 (has links)
This project is part of a collaborative MSc training programme between the Aviation Industries of China (AVIC) and Cranfield University, aiming at enhancing the competitiveness of AVIC in both international and domestic aviation market through applying continuing airworthiness policies in the whole aircraft development process. The arrangement of the research project is that all students start with a Group Design Project which is based on the Flying Crane Project provided by AVIC. Individual research projects will address some aspects of the Flying Crane Project during the Group Design Project, and then further developed during the period for individual projects. The aim of this research is to apply the airworthiness requirements and the methodology of the Maintenance Steering Group logic (MSG-3) in the Flying Crane Project. This is because that maintenance is one of the key factors of Continuing Airworthiness, and MSG-3 logic is the most accepted and approved method to develop scheduled maintenance for civil aircrafts. The main objectives of this project include: (1) To investigate current Continuing Airworthiness regulations, including European airworthiness requirements (as the main regulation to comply with) and Chinese airworthiness regulations (as an important reference and supplement to the research); (2) To investigate the main analysis methodology of reliability and maintainability, including Damage Tolerance and Failure Mode and Effect Analysis (FMEA); (3) To analyse the data resulted from the Group Design Project using MSG-3 logic to produce a set of Continuing Airworthiness instructions, for the operator and maintenance organisation of the aircraft, from the design organization’s perspective; (4) To develop Continuing Airworthiness instructions for airline operators to compose maintenance programmes for Flying Crane aircrafts, including maintenance tasks and intervals for the selected airframe systems and structural components; and (5) To identify applicable maintenance organisations in China for Flying Crane aircrafts in accordance with both European and Chinese airworthiness requirements. On completion of this research, two aspects of Continuing Airworthiness have been investigated, including maintenance programme and maintenance organization. With MSG-3 logic, the author developed the maintenance plan for three structural components (fuselage skin panel, wing root joint, and fin-fuselage attachment) and one airframe system (fuel system) based on results from the Group Design Project. The author also investigated the Chinese domestic aircraft maintenance companies, and selected suitable maintenance organizations based on technical and economical criteria.

Page generated in 0.049 seconds