• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 22
  • Tagged with
  • 166
  • 165
  • 165
  • 165
  • 165
  • 165
  • 165
  • 34
  • 32
  • 31
  • 29
  • 25
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Spectral analysis in laser powder bed fusion / Spektralanalys vid laser powder bed fusion

Brandau, Benedikt January 2022 (has links)
This thesis is about the investigation of the spectral interaction of electromagnetic radiation with metal powders. For this purpose, spectral data of powders for laser powder bed fusion processes are investigated in three papers using different techniques. In paper A the spectral radiation behavior of the laser interaction zone is considered, in paper B and C the absorbance behavior of different metal powders depending on their state and measurement method.   Paper A investigates the spectral signal of the process light generated by laser material interaction in laser powder bed fusion. The detection is performed by a coaxially guided measuring beam and a quasi-coaxial measuring beam simultaneously guided by another scanning optics. The signal characteristics depend on the angle of incidence of the measuring beam to the laser material interaction zone. Using high-speed recordings and optical simulations, a model for describing the signal behavior could be determined. The measured spectral intensity distribution representing the degree for energy coupling can be corrected with a correction factor over the whole field for solid materials. This correction includes a function describing the numerical aperture of the measuring channel and the laser intensity on the working field. For the investigated powder, the measurement signal fluctuated strongly and no transferable model could be formed. The reason for this was the different absorbance behavior of the powders investigated. Paper B therefore deals in detail with the spectral absorbance behavior of metal powders for additive manufacturing. Using a high-precision spectrometer, 39 powders were measured reflectively over a wide spectral range and the absorbance determined. By varying the degree of use, aging, grain size and impurities, various influence parameters are determined experimentally and discussed theoretically. Based on 20 derived laser wavelengths, technically usable wavelengths with better process efficiency and stability are proposed. From the obtained absorbance, the efficiency of energy coupling can be estimated and form a broad data base for the optimization of laser parameters. In order to perform the absorbance determinations also in situ in a laser powder bed fusion system paper C describes a possibility of an inline absorbance determination by high resolution coaxial imaging. A method is discussed for geometrically correct and gapless imaging of the processing plane, recorded through the laser optics. By imaging at six different wavelengths, metal powders can be distinguished by their absorbance spectrum and impurities can be detected. In an experimental implementation the functionality of the method is proven. The results are validated by optical simulations, ray tracing and comparative measurements with a high-precision spectrometer.
52

Development and evaluation of hybrid joining for metals to polymers using friction stir welding

Ratanathavorn, Wallop January 2015 (has links)
Combinations of different materials are increasingly used in the modern engineering structures. The driving forces of this trend are rising fuel costs, global warming, customer demands and strict emission standards. Engineers and industries are forced to improve fuel economy and cut emissions by introducing newly design engines and lightweighting of structural components. The use of lightweight materials in the structures has proved successful to solve these problems in many industries especially automobile and aerospace. However, industry still lacks knowledge how to manufacture components from polymeric materials in combination with metals where significant differences exist in properties. This thesis aims to demonstrate and generate the methodology and guidelines for hybrid joining of aluminium alloys to thermoplastics using friction stir welding. The developed technique was identified, optimized and evaluated from experimental data, metallography and mechanical characterization. The success of the technique is assessed by benchmarking with recent literatures. In this work, lap joints between aluminium alloys (AA5754, AA6111) and thermoplastics (PP, PPS) were produced by the friction stir welding technique. The specimens were joined with the friction stir welding tools under as-received conditions. Metallic chips were generated and merged with the molten thermoplastic to form a joint under the influence of the rotating and translating tool. The effects of process parameters such as rotational speed, translational speed and distance to backing were analyzed and discussed. The investigation found joint strength was dominated by mechanical interlocking between the stir zone and the aluminium sheet. The results also show that the joint strength is of the same order of magnitude as for other alternative joining techniques in the literature. / <p>QC 20150908</p>
53

Hybrid Joining of Aluminum to Thermoplastics with Friction Stir Welding

Ratanathavorn, Wallop January 2012 (has links)
Hybrid structures including aluminum-thermoplastic and aluminum-reinforced thermoplastic composite are increasingly important in the near future innovations due to its lightweight and high strength-to-weight ratio. A critical point for metal-polymer application is that sound joining of these materials is difficult to achieve owing to a large difference in surface energy and dissimilar structure between metal and polymer. In practice, two major joining methods for hybrid structures are mechanical joining and adhesive bonding. However, there are some drawbacks of these conventional methods such as stress concentration, long curing time and low reliability joints. A new novel metal-polymer hybrid joining is required to overcome these issues as well as manufacturing and cost perspectives. To this end, this work aims to develop a general methodology to apply friction stir welding techniques to join a wide range of thermoplastics with and without fibers to aluminum alloy sheets. The present work proposed an experimental study to attain insight knowledge on the influences of welding parameters on the quality of hybrid joints in term of the maximum tensile shear strength. This includes the role of tool geometries, welding methodology as well as material weldability in the investigation. The results showed that friction stir welding is a promising technique for joining of thermoplastic to aluminum. Microstructural observation showed that a good mixing between aluminum and thermoplastic as well as defect-free weldments were obtained. Tool geometries and welding speed are two factors that significantly contribute to the quality of friction stir welded hybrid joints. The results also demonstrated that weld fracture modes are associated with material mixing as well as interfacial bonding between aluminum and thermoplastic. An evaluation of the joint strength was benchmarked with the relevant literatures on hybrid joining. The results of proposed technique showed that the maximum tensile shear strength of friction stir welded joints were the same order of magnitude as the joints welded by laser welding.
54

Laser Welding and Additive Manufacturing of Duplex Stainless Steels : Properties and Microstructure Characterization

Baghdadchi, Amir January 2022 (has links)
Duplex stainless steels (DSS), with a ferritic-austenitic microstructure, are used ina wide range of applications thanks to their high corrosion resistance and excellent mechanical properties. However, efficient and successful production and joining of DSS require precise control of processes and an in-depth understanding o frelations between composition, processing thermal cycles, resulting microstructures and properties. In this study laser welding, laser reheating, and laser additive manufacturing using Laser Metal Deposition with Wire (LMDw) ofDSS and resulting weld and component microstructures and properties are explored. In the first part a lean FDX 27 duplex stainless steel, showing the transformation induced plasticity (TRIP) effect, was autogenously laser welded and laser reheated using pure argon or pure nitrogen as shielding gas. The weld metal austenite fraction was 22% for argon-shielding and 39% for nitrogen-shielding in as-welded conditions. Less nitrides were found with nitrogen-shielding compared to argonshielding. Laser reheating did not significantly affect nitride content or austenite fraction for argon-shielding. However, laser reheating of the nitrogen shieldedweld removed nitrides and increased the austenite fraction to 57% illustrating the effectiveness of this approach. Phase fraction analysis is important for DSS since the balance between ferrite and austenite affects properties. For TRIP steels the possibility of austenite tomartensite transformation during sample preparation also has to be considered. Phases in the laser welded and reheated FDX 27 DSS were identified and quantified using light optical microscopy (LOM) and electron backscatter diffraction (EBSD) analysis. An optimized Beraha color etching procedure was developed for identification of martensite by LOM. A novel step-by-step EBSD methodology was also introduced, which successfully identified and quantified martensite as well as ferrite and austenite. It was found that mechanical polishing produced up to 26% strain-induced martensite, while no martensite was observed after electrolytic polishing.In the second part a systematic four-stage methodology was applied to develop procedures for additive manufacturing of standard 22% Cr duplex stainless steel components using LMDw combined with the hot wire technology. In the four stages, single-bead passes, a single-bead wall, a block, and finally a cylinder with an inner diameter of 160 mm, thickness of 30 mm, and height of 140 mm were produced. The as-deposited microstructure was inhomogeneous and repetitive including highly ferritic regions with nitrides and regions with high fractions ofaustenite. Heat treatment for 1 hour at 1100 ̊C homogenized the microstructure, removed nitrides, and produced an austenite fraction of about 50%. Strength, ductility, and toughness were at a high level for the cylinder, comparable to those of wrought type 2205 steel, both as-deposited and after heat treatment. The highest strength was achieved for the as-deposited condition with a yield strength of 765 MPa and a tensile strength of 865 MPa, while the highest elongation of 35% was found after heat treatment. Epitaxial growth of ferrite during solidification, giving elongated grains along the build direction, resulted in anisotropy of toughness properties. The highest impact toughness energies were measured for specimens with the notch perpendicular to the build direction after heat treatment with close to 300 J at -10oC. It was concluded that implementing a systematic methodology with a stepwise increase in the deposited volume and geometrical complexity can successfully be used when developing additive manufacturing procedures for significantly sized metallic components. This study has illustrated that a laser beam can successfully be used as heat source in processing of duplex stainless steel both for welding and additive manufacturing. However, challenges like nitrogen loss, low austenite fractions and nitride formation have to be handled by precise process control and/or heat treatment. / Duplexa rostfria stål (DSS) är viktiga konstruktionsmaterial tack vare derasutmärkta mekaniska egenskaper och goda korrosionsbeständighet. Vid svetsningoch additiv tillverkning krävs noggrann styrning av parametrar och kunskap om processernas inverkan på mikrostrukturen för att uppnå önskade egenskaper.Lasersvetsning, värmebehandling med laser och additiv tillverkning i form av lasermetalldeponering med tråd (LMDw) har därför studerats för DSS. Det duplexa stålet FDX 27 lasersvetsades utan tillsatsmaterial och med argon ellerkväve som skyddsgas. Kvävgasskydd gav mer austenit och färre nitrider änargonskydd. En efterföljande laservärmebehandling löste upp nitriderna då kväve användes som skyddsgas och austenithalten ökade till 57%. Austeniten i FDX 27kan vid deformation omvandlas till martensit. Två metoder för identifiering av martensit utvecklades därför: en färgetsmetod för ljusoptisk mikroskopi samt en metod som utnyttjar bakåtspridda elektroner (EBSD) vid elektronmikroskopi.Som mest bildades 26% martensit vid mekanisk provpreparering medan elektropolerade prover endast innehöll austenit och ferrit. Procedurer togs fram för additiv tillverkning av komponenter, i 22% krom duplexa rostfria stål, med LMDw kombinerat med varmtrådsteknik. Slutprodukten var en 140 mm hög cylinder med 160 mm inre diameter och tjocklek av 30 mm. Mikrostrukturen var inhomogen med periodiskt omväxlande ferritiska områden med nitrider, och områden med stor andel austenit.Värmebehandling under 1 timme vid 1100oC eliminerade nitriderna och gav en homogen struktur med ca. 50% austenit. De mekaniska egenskaperna var, både före och efter värmebehandling, jämförbara med de typiska för motsvarande stål. Högst hållfasthet uppmättes före värmebehandling med sträckgränsen 765 MPa och brottgränsen 865 MPa, medan den största förlängningen var 35% efter värmebehandling. Slagsegheten var upp till 300 J vid -10oC men varierade med hur provstavens brottanvisning var orienterad relativt byggriktningen.Laser är en lämplig energikälla vid svetsning och additiv tillverkning av duplexa rostfria stål. Utmaningar som kväveförlust, låga austenithalter och nitridbildning kan hanteras med noggrann processkontroll och/eller värmebehandling.
55

Laser beam-material interaction in Powder Bed Fusion

Fedina, Tatiana January 2021 (has links)
The acceptance of additive manufacturing (AM) depends on the quality of final parts and the process repeatability. Recently, many studies have been dedicated to the establishment of the relationship between the process behavior and material performance. Phenomena such as laser-material interaction, melt pool dynamics, ejecta formation and particle movement behavior on a powder bed are of a particular interest for the AM community as these events directly influence the outcome of the process. Another aspect, which hinders the adoption of AM, is the need for cost-efficient powder materials and their sustainable processing and subsequent recycling.  The research work presented in this thesis, to a certain degree, covers the above mentioned scientific aspects and focuses on the behavior of gas and water atomized steel powders in laser powder bed fusion (LPBF).  Paper I demonstrates a comparative study of dissimilarly-shaped gas and water atomized low alloy steel powders regarding their processability, packing capacities, particle movement behavior and powder performance in LPBF. The impact of chemical composition and morphology of the powders on the process behavior was revealed. Powder spattering and melt pool instabilities were discussed in detail.  Paper II explains the role of ejecta in the recycled powder and the changing behavior of the material due to ejecta pick-up. The impact of multiple powder recycling on the degradation of low alloy steel powder in laser powder bed fusion was studied. Oxygen content, particle size and ejecta occurrence gradually increased after each recycling step and were identified as the main contributors to the property alterations observed in the powder during recycling. In addition, a direct correlation between the increase in oxygen with repeated recycling and a more frequent spatter ejection after each recycle was established.  Paper III is a successor of Paper I and contains a research on the particle movement and denudation behavior on a powder bed when using near-spherical and non-spherical steel powders. The influence of particle morphology on the dynamics of arbitrary-shaped powder particles was studied by applying an analytical correlation formula to calculate the drag force exerted on powder particles of various shape. Particle entrainment of gas and water atomized powders in front of the laser beam was measured, revealing a significant difference in the powder transfer towards the melt pool.
56

Characterization &amp; modeling of chip flow angle &amp; morphology in 2D &amp; 3D turning process

Devotta, Ashwin Moris January 2015 (has links)
Within manufacturing of metallic components, machining plays an important role and is of vital significance to ensure process reliability. From a cutting tool design perspective,  tool macro geometry  design  based on physics based  numerical modelling  is highly needed  that can predict chip morphology.  The chip morphology describes the chip shape geometry and the chip curl geometry. The prediction of chip flow and chip shape is vital in predicting chip breakage, ensuring good chip evacuation and lower surface roughness.  To this end, a platform where such a  numerical model’s chip morphology prediction  can be compared with experimental investigation is needed and is the focus of this work. The studied cutting processes are orthogonal cutting process and nose turning process. Numerical models that simulate the chip formation process are employed to predict the chip morphology and are accompanied by machining experiments. Computed tomography is used  to scan the chips obtained from machining experiments and its ability to capture the variation in  chip morphology  is evaluated.  For nose turning process,  chip  curl parameters during the cutting process are to be calculated. Kharkevich model is utilized in this regard to calculate the  ‘chip in process’ chip curl parameters. High speed videography is used to measure the chip side flow angle during the cutting process experiments and are directly compared to physics based model predictions. The results show that the methodology developed provides  the framework where advances in numerical models can be evaluated reliably from a chip morphology prediction capability view point for nose turning process. The numerical modeling results show that the chip morphology variation for varying cutting conditions is predicted qualitatively. The results of quantitative evaluation of chip morphology prediction shows that the error in prediction is too large to be used for predictive modelling purposes.
57

Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics

Segerstark, Andreas January 2015 (has links)
Additive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study.Laser metal deposition using powder as an additive (LMD-p) is an AM processwhich uses a multi-axis computer numerical control (CNC) machine or robot toguide the laser beam and powder nozzle over the deposition surface. Thecomponent is built by depositing adjacent beads layer by layer until thecomponent is completed. LMD-p has lately gained attention as a manufacturing method which can add features to semi-finished components or as a repair method. LMD-p introduce a low heat input compared to arc welding methods and is therefore well suited in applications where a low heat input is of an essence. For instance, in repair of sensitive parts where too much heating compromises the integrity of the part.The main part of this study has been focused on correlating the main processparameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance and that these parameters has a significant effect on the dimensionalcharacteristics of the material such as height and width of a single deposit as wellas the straightness of the top surface and the penetration depth.To further understand the effects found in the material, temperaturemeasurements has been conducted using a temperature measurement methoddeveloped and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the emitted laser light on the thermocouples.
58

Utredning av risker och begränsningar vid användning av gasmetallbågsvetsning vid montage / Investigation of risks and limitations when using gas metal arc welding for assembly

Morin, Claes January 2015 (has links)
Det här examensarbetet har utrett riskerna för att få bindfel vid gasmetalbågsvetsning av halv V-fog på uppdrag för DEKRA Industrial AB som utför teknisk kontroll, certifiering, provning och besiktning. Arbetet utreder ett tidigare fall där indikationer från ultraljudsprovning visade att bindfel och ofullständig inträngning fanns i den större delen av svetsförbanden i en konstruktion. De svetsförbanden var svetsade med gasmetalbågsvetsning och har en halv V-fogs utformning. En litteraturstudie gjordes om ljusbågsteorin och orsaken till bindfel. Sedan svetsades fyra prover upp, två med snäv fogvinkel och två med bred fogvinkel, där det tidigare fallet försöktes efterliknas. Proverna provades med ultraljudsprovning och makroskopisk provning för att finna bindfel och andra defekter. Litteraturstudien visar att bindfel uppkommer så fort ljusbågen inte hinner smälta upp det underliggande materialet och smältan läggs på osmält material. En av orsakerna till det är fel pistolvinkel vilket ger att ena fogen inte smälts och bindfel erhålls. Dessutom så spelar elektrodutsticket stor roll där ett för långt elektrodustick antingen ger en för kall process eller ett för stort smältbad beroende på om parametrarna ändras av svetsaren. Vid svetsning i halv V-fog så är åtkomligheten dålig så det är stor risk att få både fel pistol vinkel och ett felaktigt elektrodutstick. Provsvetsningens resultat var att de snäva halva V-fogarna var svår svetsade och fick ofullständig inträngning och innehöll bindfel och slagginneslutningar. Dessutom var topsträngarna svårsvetsade med WPS:ens parameterar. Slutsatsen efter svetsningen och provningen är att risken för bindfel är hög vid snäva fogar samt att de som svetsat i det tidigare fallet inte kan ha följt sina WPS:er för att uppnå godkända toppsträngar. / This thesis work has evaluated the risks of getting lack of fusion during gas metal arc welding of single-bevel prepared T-joints. The work has been done at DEKRA Industrial AB that is specialized in certification, testing and inspection. The reason for this work is an earlier case where ultrasound testing indicated lack of fusion and lack of penetration was located in the major part of the weld joints in a construction. Those weld joints had been gas metal arc welded and had a single-bevel preparation. A literature study was done on the subject of weld arc theory and the cause of lack of fusion. Then four samples were welded trying to imitate the earlier case, two with a wide joint preparation and two with a narrow preparation. The samples were subjected to ultrasound testing and macroscopic analysis to evaluate the existence of lack of fusion and other defects. The literature study shows that lack of fusion appear as soon the weld arc miss the base material and the molten weld consumable solidify on unmelted material. One of the causes is a wrong pistol angle which will make the weld arc miss one of the joint walls. Also, another important parameter is the electrode stick-out. A too long stick-out generates a too cold process or a too large puddle of melted metal depending if the welding parameters are adjusted to compensate the stick-out. When welding with a single-bevel joint, there is a heightened risk of getting the described problems because of the bad accessibility. The results from the welding were that the narrow prepared joints were hard to weld with and get proper quality, with lack of penetration and lack of fusion. The conclusion from the welding and testing is that the risk of getting lack of fusion is high while welding narrow single-bevel prepared Tjoints.
59

Crack growth in single crystal nickel base superalloys under isothermal and thermomechanical fatigue

Palmert, Frans January 2019 (has links)
This work concerns the fatigue crack growth behaviour of nickel base single crystal superalloys. The main industrial application of this class of materials is in gas turbine blades, where the ability to withstand severe mechanical loading in combination with high temperatures is required. In order to ensure the structural integrity of gas turbine blades, knowledge of the fatigue crack growth behaviour under service-like conditions is of utmost importance. The aim of the present work is both to improve the understanding of the crack growth behaviour of single crystal superalloys and also to improve the testing and evaluation methodology for crack propagation under thermomechanical fatigue loading conditions. Single crystal superalloys have anisotropic mechanical properties and are prone to localization of inelastic deformation along the close-packed planes of the crystal lattice. Under some conditions, crystallographic crack growth occurs along these planes and this is a complicating factor throughout the whole chain of crack propagation life simulation; from material data generation to component calculation. Fatigue crack growth testing has been performed, both using conventional isothermal testing methods and also using thermomechanical fatigue crack growth testing. Experimental observations regarding crystallographic crack growth have been made and its dependence on crystal orientation and testing temperature has been investigated. Quantitative crack growth data are however only presented for the case of Mode I crack growth under isothermal as well as thermomechanical fatigue conditions. Microstructural investigations have been undertaken to investigate the deformation mechanisms governing the crack growth behaviour. A compliance based method for the evaluation of crack opening force under thermomechanical fatigue conditions was developed, in order to enable a detailed analysis of the test data. The crack opening force evaluation proved to be of key importance in the understanding of the crack driving force under different testing conditions. / <p>In the printed version of the thesis the series name <em>Linköping Studies in Science and Technology Licentiate of engineering thesis</em> is incorrect. The correct series name is <em>Linköping Studies in Science and Technology Licentiate thesis</em>.</p>
60

Increasing the diodicity of ceramic Tesla valves by exploiting the design freedom of additive manufacturing : A study in design optimizations of Tesla valves for ceramic 3D printing

Sharma, Udit January 2024 (has links)
The work presented in this thesis was conducted at Uppsala University and at Fraunhofer IKTS, Dresden. The thesis aims to study design optimizations for increasing the diodicity and thereby performance of a Tesla valve, a type of “no moving parts” (NMP) valve, through design freedoms offered by ceramic additive manufacturing. Tesla valves are capable of creating a pressure differential across them purely by virtue of mechanical design, and do not employ any moving parts. By geometry manipulation, Tesla valves enable fluid to flow in a way that hinders its own flow, thereby creating fluidic resistance and increasing pressure in one fluid direction, while allowing relatively unimpeded flow in the opposite direction. The manufacture of Tesla valves in the past has been restricted to simple geometries because conventional manufacturing processes such as CNC machining are unable to produce intricate geometries, something that Tesla valves require. With the recent innovations in additive manufacturing, design of these complex geometries has become feasible but still requires further research. Prior literature has only explored relatively simpler constructs of Tesla valves, not fully utilizing the design freedoms offered by additive manufacturing. In this thesis, ceramic additive manufacturing and stereolithography has been used to manufacture complex Tesla valves. In addition to just complex design, this thesis also presents design optimizations that can be utilized for simpler Tesla valves for increasing a metric known as diodicity. Diodicity refers to the ratio of reverse to forward pressure difference, and a high diodicity of a valve indicates that the valve is able to hinder fluid flow more effectively in one direction than the opposite. Additive manufacturing boasts an ability to construct complex geometries, due to the layer-by-layer process of building the final component. Stereolithography (in particular, ceramic stereolithography) is capable of producing parts that have high resolution and dimensional accuracy, while also maintaining desirable material properties, such as resistance to high temperatures and mechanical durability. Since the envisioned Tesla valve is to be used at elevated temperatures, this makes stereolithography a viable method of producing Tesla valves for aerospace applications. Design optimizations were carried out and subsequently verified for effectiveness through fluid flow simulations and practical evaluations. Certain design optimizations were shown to have drastic effects on the diodicity of the Tesla valve, and these have been subsequently incorporated into the designs of the Tesla valve in an effort to increase the diodicity of the designed Tesla valves. For practical evaluation, the optimized Tesla valves were 3D printed through ceramic stereolithography and stereolithography and extensively tested on a testing rig, with experimental parameters congruent to the fluid flow parameters applied during fluid flow simulations. It was found that the results of the fluid flow simulations and experimental testing were somewhat consistent with each other, and that it is feasible to produce optimized Tesla valves through ceramic stereolithography. However, it was found through practical evaluation that certain design optimizations were found to have little to no effect on the diodicity of the final Tesla valve, with some optimizations even reducing the diodicity.

Page generated in 0.1104 seconds