Spelling suggestions: "subject:"fonction dde picard"" "subject:"fonction dde ricard""
1 |
Champs algébriques et foncteur de PicardBrochard, Sylvain 08 June 2007 (has links) (PDF)
Le foncteur de Picard d'un schéma a fait l'objet d'une étude approfondie dans les années soixante. La décennie suivante a vu naître avec les travaux de Giraud puis Deligne, Mumford, et enfin Artin la notion de champ algébrique, qui généralise celle de schéma. Nous nous intéressons dans cette thèse au foncteur de Picard d'un champ algébrique et démontrons à son sujet un certain nombre de résultats bien connus dans le cadre des schémas. Nous étudions entre autres la représentabilité du foncteur de Picard, ses propriétés de séparation, de finitude relative, et les déformations de faisceaux inversibles. Nous construisons également la composante neutre du foncteur de Picard et étudions sa propreté. Quelques exemples viennent étayer le propos. Ces travaux nous ont amené à résoudre un certain nombre de problèmes techniques relatifs à la cohomologie des faisceaux abéliens sur le site lisse-étale d'un champ algébrique. Ces questions ont été rassemblées en annexe en fin de volume.
|
2 |
Groupe de Picard des groupes unipotents sur un corps quelconque / Picard groups of unipotent algebraic groups over an arbitrary fieldAchet, Raphaël 25 September 2017 (has links)
Soit k un corps quelconque. Dans cette th±se, on étudie le groupe de Picard des k-groupes algébriques unipotents (lisses et connexes).Tout k-groupe algébrique unipotent est extension itérée de formes du groupe additif; on va donc d'abord s'intéresser au groupe de Picard des formes du groupe additif. L'étude de ce groupe est faite avec une méthode géométrique qui permet de traiter le cas plus général des formes de la droite affine. On obtient ainsi une borne explicite sur la torsion du groupe de Picard desformes de la droite affine et sur la torsion de la composante neutre du foncteur de Picard de leur complétion régulière. De plus, on trouve une condition suffisante pour que le groupe de Picard d'une forme de la droite affinesoit non trivial et on construit des exemples de formes non triviales de la droite affine dont le groupe de Picard est trivial.Un k-groupe algébrique unipotent est une forme de l'espace affine. Afin d'étudier le groupe de Picard d'une forme X de l'espace affine avec une méthode géométrique, on définit un foncteur de Picard "restreint". On montre que si X admet une complétion régulière, alors le foncteur de Picard "restreint" est représentable par un k-groupe unipotent (lisse, non nécessairement connexe).Avec ce foncteur de Picard "restreint" et des raisonnements purement géométriques, on obtient que le groupe de Picard d'une forme unirationnelle de l'espace affine est fini. De plus, on généralise un résultat dû à B. Totaro: si k est séparablement clos, et si le groupe de Picard d'un k-groupe algébrique unipotent commutatif est non trivial, alors il admet une extension non triviale par le groupe multiplicatif. / Let k be any field. In this Ph.D. dissertation we study the Picard group of the (smooth connected) unipotent k-algebraic groups.As every unipotent algebraic group is an iterated extension of forms of the additive group, we will study the Picard group of the forms of the additive group. In fact we study the Picard group of forms of the additive group and the affine line simultaneously using a geometric method. We obtain anexplicit upper bound on the torsion of the Picard group of the forms of the affine line and their regular completion, and a sufficient condition for the Picard group of a form of the affine line to be nontrivial. We also give examples of nontrivial forms of the affine line with trivial Picard groups.In general, a unipotent k-algebraic group is a form of the affine n-space. In order to study the Picard group of a form X of the affine n-space with a geometric method, we define a "restricted" Picard functor; we show that if X admits a regular completion then the "restricted" Picard functor is representable by a unipotent k-algebraic group (smooth, not necessarly connected). With this "restricted" Picard functor and geometric arguments we show that the Picard group of a unirational form of the affine n-space is finite. Moreover we generalise a result of B. Totaro: if k is separablyclosed and if the Picard group of a unipotent k-algebraic group is nontrivial then it admits a nontrivial extension by the multiplicative group.
|
3 |
Prolongement de faisceaux inversiblesPepin, Cédric 30 June 2011 (has links)
Soit R un anneau de valuation discrète de corps de fractions K. Soit X_K un K- schéma propre géométriquement normal. On montre que X_K possède des modèles X sur R, propres, plats, normaux et tels que tout faisceau inversible sur X_K se prolonge en un faisceau inversible sur X. On peut alors reconstruire le modèle de Néron de la variété de Picard de X_K, à partir du foncteur de Picard de X/R.Lorsque R est hensélien à corps résiduel algébriquement clos, on en tire des informations sur le prolongement de l’équivalence algébrique de X_K à X. En particulier, on peut décrire le symbole de Néron entre 0-cycles de degré zéro et diviseurs algébriquement équivalents à zéro sur X_K, en termes de multiplicités d’intersection sur le modèle X. Ceci nous permet de reformuler la conjecture de dualité de Grothendieck pour les modèles de Néron des variétés abéliennes, en termes d’équivalence algébrique relative. / Let R be a discrete valuation ring with fraction field K. Let X_K be proper geometrically normal scheme over K. One shows that X_K admits models X over R which are proper, flat, normal an such that any invertible sheaf on X_K can be extended to an invertible sheaf on X. Then, one can recover the Néron model of the Picard variety of X_K from the Picard functor of X/R.When R is henselian with algebraically closed residue field, one obtains some consequences about the extension of algebraic equivalence from X_K to X. In particular, one can describe the Néron symbol between 0-cycles of degree zero and divisors which are algebraically equivalent to zero on X_K, in terms of intersection multiplicities on the model X. This allows us to reformulate Grothendieck’s duality conjecture for Néron models of abelian varieties, in terms of relative algebraic equivalence.
|
Page generated in 0.0609 seconds