• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-function studies of membrane proteins by site-specific incorporation of unnatural amino acids / Etudes structure-fonction de protéines membranaires par incorporation spécifique d'acides aminés non naturels

Tian, Meilin 20 June 2017 (has links)
Les protéines membranaires comme les récepteurs, les canaux ioniques et les transporteurs possèdent des rôles cruciaux dans les processus biologiques tels que la signalisation physiologique et les fonctions cellulaires. La description dynamique et fonctionnelle des structures protéiques est fondamentale pour comprendre la plupart des processus concernant les macromolécules biologiques. L'incorporation, dans des protéines, d'acides aminés non naturels (Uaas) possédant des propriétés physiques ou chimiques spécifiques fournit un puissant outil pour définir la structure et la dynamique de protéines complexes. Ces sondes permettent le suivi et la détection en temps réel de la conformation des récepteurs et des complexes de signalisation. Les approches d'expansion du code génétique ont permis l'incorporation d'Uaas servant de sondes dans des protéines avec une précision moléculaire. L'expansion héréditaire du code génétique peut permettre d'étudier la biologie des protéines de manière systémique.Avec cette stratégie, des Uaas capables de photopontage ont été utilisés pour étudier la relation structure/fonction des Protéines G Couplées aux Récepteurs (GPCR), telles que l'identification de la liaison du ligand ou des interactions protéine-protéine, en détectant les changements dynamiques avec les Uaas spectroscopiques et l'étiquetage bioorthogonal. Sur la base d'applications relativement bien établies d'Uaa dans les GPCR, ici, les analyses fonctionnelles sont combinées à l'incorporation génétique d'un Uaa photosensible spécifique au site, p-azido-L-phénylalanine (AzF) dans d'autres protéines membranaires, pour détecter la protéine, les changements conformationnels et les interactions protéiques. Contrairement à d’autres molécules photosensibles qui permettent aux protéines de répondre à la lumière, l'insertion des Uaas directement dans la chaine d’acides aminés offre des possibilités uniques pour le photo-contrôle de la protéine. Les aspects dynamiques de l'allostérie sont plus difficiles à visualiser que les modèles structuraux statiques. Une stratégie photochimique est présentée pour caractériser la dynamique des mécanismes allostériques des récepteurs NMDA neuronaux (NMDAR). Ces récepteurs appartiennent à la famille des canaux ioniques activés par le glutamate et portent la transmission synaptique excitatrice rapide associée à l'apprentissage et à la mémoire. En combinant le balayage AzF et un test fonctionnel résistant à la lumière, nous avons pu apporter des éléments permettant de mieux comprendre la dynamique des interfaces NTD (N-Terminal Domain des NMDAR) ainsi qu’un nouveau mécanisme de régulation allostérique, améliorant notre compréhension de la base structurale du mécanisme d’activation et de modulation des récepteurs NMDA.Outre l'incorporation de l’Uaa photopontant AzF dans les récepteurs neuronaux pour détecter l'effet fonctionnel, AzF a été appliqué pour piéger des interactions faibles et transitoires entre protéines dans un transporteur d'acides aminés LAT3, impliqué dans le cancer de la prostate. Les techniques de dépistage ont été établies en appliquant un photo-cross-linker positionné dans la protéine pour examiner les interactions entre LAT3 et les interacteurs inconnus et fournir des indices d'identification des partenaires de liaison.Dans l'ensemble, ce travail dévoile de nouvelles informations sur la modulation allostérique de l'activité du récepteur NMDA et sur les interactions protéines-protéines.. Les résultats pourraient fournir de nouvelles informations structurales et fonctionnelles et guider le dépistage de composés thérapeutiques pour des maladies associées au dysfonctionnement de ces protéines membranaires. / Membrane proteins including receptors, channels and transporters play crucial roles in biological processes such as physiological signaling and cellular functions. Description of dynamic structures and functions of proteins is fundamental to understand most processes involving biological macromolecules. The incorporation of unnatural amino acids (Uaas) containing distinct physical or chemical properties into proteins provides a powerful tool to define the challenging protein structure and dynamics. These probes allow monitoring and real-time detection of receptor conformational changes and signaling complexes. The genetic code expansion approaches have enabled the incorporation of Uaas serving as probes into proteins with molecular precision. Heritable expansion of the genetic code may allow protein biology to be investigated in a system-wide manner.With this strategy, photocrosslinking Uaas have been used to study GPCR structure/function relationship, such as identifying GPCR-ligand binding or protein-protein interactions, detecting dynamic changes with spectroscopic Uaas and bioorthogonal labeling. Based on relatively well-established applications of Uaa in GPCRs, here, functional assays are combined with the site-specific genetic incorporation of a photo-sensitive Uaa, p-azido-L-phenylalanine (AzF) into other membrane proteins, to probe protein conformational changes and protein interactions. Unlike photo-sensitive ligands that enable proteins in response to light, the site-specific insertion of light-sensitive Uaas facilitates directly light-sensitive proteins. Dynamic aspects of allostery are more challenging to visualize than static structural models. A photochemical strategy was presented to characterize dynamic allostery of neuronal NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor channel family and mediate the fast excitatory synaptic transmission associated with learning and memory. By combining AzF scanning and a robust light-induced functional assay the dynamics of NMDAR N-terminal domain (NTD) interfaces and novel allosteric regulation mechanism were uncovered, improving our understanding of the structural basis of NMDAR gating and modulation mechanism.Besides incorporation of photo-cross-linker AzF into neuronal receptors to detect the functional effect, AzF was used to trap transient and weak protein-protein interactions in an amino acid transporter LAT3, which is critical in prostate cancer. Screening technique was established by applying genetically encoded photo-cross-linker to examine interactions between LAT3 and unknown interactors and provide clues to identify the binding partners.Overall, the work reveals new informations about the allosteric modulation of channel activity and proteins interactions. These light-sensitive proteins facilitated by site-specific insertion of light-sensitive Uaas enable profiling diversity of proteins. The results will provide novel structural and functional information and may guide screening of therapeutic compounds for diseases associated with malfunctioning of these membrane proteins.
2

Étudier les fonctions des protéines avec des nanoantennes fluorescentes

Harroun, Scott G. 09 1900 (has links)
Caractériser la fonction des protéines est crucial pour notre compréhension des mécanismes moléculaires de la vie, des maladies, et aussi pour inspirer de nouvelles applications en bionanotechnologie. Pour y arriver, il est nécessaire de caractériser la structure et la dynamique de chaque état occupé par la protéine durant sa fonction. La caractérisation expérimentale des états transitoires des protéines représente encore un défi majeur parce que les techniques à haute résolution structurelle, telles que la spectroscopie RMN et la cristallographie aux rayons X, peuvent difficilement être appliquées à l’étude des états de courte durée. De plus, les techniques à haute résolution temporelle, telles que la spectroscopie de fluorescence, nécessitent généralement une chimie complexe pour introduire des fluorophores à des endroits spécifiques dans la protéine. Dans cette thèse nous introduisons l’utilisation des nanoantennes fluorescentes en tant que nouvelle stratégie pour détecter et signaler les changements de conformation des protéines via des interactions non covalentes entre des fluorophores spécifiques et la surface de la protéine. En utilisant des expériences et des simulations moléculaires, nous démontrons que des fluorophores chimiquement divers peuvent se lier et être utilisés pour sonder différentes régions d’une enzyme modèle, la phosphatase alcaline (PA). Ces nanoantennes peuvent être fixées directement aux protéines ou utilisées à l'aide du système de fixation simple et modulaire, le complexe biotine-streptavidine (SA), qui permet un criblage rapide et efficace de la nanoantenne optimale tant dans sa composition que sa longueur. Dans le cas de la PA, nous montrons que nos nanoantennes permettent la détection et la caractérisation des conformations distinctes incluant les changements conformationnels nanoscopiques produisant durant la catalyse du substrat. Nous démontrons également que les signaux fluorescents émis par la nanoantenne peuvent également permettre de caractériser la cinétique enzymatique d’une protéine en une seule expérience tout en incluant la détermination des paramètres « Michaelis-Menten » de ses substrats et inhibiteurs. Nous avons également exploré l'universalité de la stratégie ces nanoantennes fluorescentes en utilisant une autre protéine modèle, la Protéine G et son interaction avec les anticorps, et avons démontré son utilité pour mettre au point un essai permettant de détecter les anticorps. Ces nanoantennes simples et faciles à utiliser peuvent être appliquées pour détecter et analyser les changements conformationnels de toutes tailles et nos résultats suggèrent qu'elles pourraient être utilisées pour caractériser n’importe quel type de fonction. / The characterisation of protein function is crucial to understanding the molecular mechanisms of life and disease, and inspires new applications in bionanotechnology. To do so, it is necessary to characterise the structure and dynamics of each state that proteins adopt during their function. Experimental study of protein transient states, however, remains a major challenge because high-structural-resolution techniques, including NMR spectroscopy and X-ray crystallography, can often not be directly applied to study short-lived protein states. On the other hand, high-temporal-resolution techniques, such as fluorescence spectroscopy, typically require complicated site-specific labelling chemistry. This thesis introduces the use of fluorescent nanoantennas as a new strategy for sensing and reporting on protein conformational changes through noncovalent dye-protein interactions driven by a high local concentration. Using experiments and molecular simulations, we first demonstrate that chemically diverse dyes can bind and be used to probe different regions of a model enzyme, intestinal alkaline phosphatase (AP). These nanoantennas can be attached directly to proteins or employed using the simple and modular biotin-streptavidin (SA) attachment system, which enables rapid and efficient screening for high sensitivity by tuning their length and composition. We show that these nanoantennas enable the detection and characterisation of distinct conformational changes of AP, including nanoscale conformational changes that occur during substrate catalysis. We also show that the fluorescent signal emitted by the nanoantenna enables complete characterisation of enzyme kinetics in one experiment, including determination of Michaelis-Menten parameters of substrates and inhibitors of AP. We then explored the universality of the nanoantenna strategy by using a different model protein system. Protein G was shown to interact with antibodies, using a rapid screening strategy for antibody detection. These effective and easy-to-use nanoantennas could potentially be employed to monitor various conformational changes, and our results offer potential for characterising various protein functions.

Page generated in 0.0945 seconds