• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient

Abdel Hamid, Haydar 07 December 2009 (has links) (PDF)
Dans ce manuscrit de thèse nous présentons des nouveaux résultats concernant l'existence, la non-existence, la multiplicité et la régularité des solutions positives pour deux problèmes quasilinéaires elliptiques avec conditions de Dirichlet dans un domaine borné. Dans le chapitre 1 d'introduction, nous décrivons les deux problèmes que nous allons étudier et nous donnons les principaux résultats. Le premier, d'inconnue u, comporte un terme de source de gradient à croissance critique. Le second, d'inconnue v, contient un terme source d'ordre 0. Dans le chapitre 2 nous donnons des nouveaux résultats de régularité des solutions renormalisées utiles pour notre étude. A l'aide d'un changement d'inconnue, nous établissons un lien précis entre les problèmes en u et v. Le chapitre 3 est consacré à montrer ce lien et à donner une première application. Dans les chapitres 4 et 5 nous traitons de l'existence de solutions, la solution extrémale et sa régularité, l'existence d'une deuxième solution bornée du problème en v. Dans le chapitre 6 nous démontrons un résultat d'existence pour le problème en v avec des données mesures de Radon bornées quelconques. Dans le chapitre 7 nous obtenons des nouveaux résultats pour le problème en u en utilisant la connexion entre ces deux problèmes.

Page generated in 0.3669 seconds