• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 167
  • 167
  • 83
  • 37
  • 23
  • 20
  • 20
  • 19
  • 17
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hormone Mediated Transport of Calcium and Phosphate in Polarized Epithelial Cells

Sterling, Tremaine M. 01 May 2004 (has links)
The effects of 1,25(OH)2D3, PTH and 25(OH)D3 on phosphate or calcium uptake were studied in cultured, adherent chick enterocytes over a period of 10 min after hormone addition. Time course studies of cells treated with 130 pM 1,25(OH)2D3 showed an increase in 32P uptake as early as 3 min. Similar studies with 65 pM bPTH(l1-34) resulted in an increase in 45Ca uptake only if the cells had been cultured in serum. (OH)D3, which is not firmly established as an active metabolite of vitamin D, was shown to increase 45Ca uptake within 5 min at a 100 nM concentration. Analyses of signal transduction events involving each hormone were undertaken using PKC and PKA inhibitors, chelerythrine and Rp-cAMP, respectively. In the presence of PKC inhibitor and 1,25(OH)2D3 elevated 32P levels were apparent; however, further investigations involving efflux studies showed PKC inhibition of 32P extrusion in the presence or absence of hormone. On the other hand, suppression of the PKA pathway stimulated an increase in 1,25(OH)2D3-mediated 32P uptake. Preincubation of enterocytes with Ab099 against a putative membrane receptor for 1,25(OH)2D3 abolished steroid-stimulated 32P uptake. While PKC inhibition had no effect on 45Ca uptake in enterocytes exposed to 65 pM bPTH(1-34) in serum, pretreatment with PKA inhibitor resulted in 45Ca levels relatively close to basal levels. Cells pretreated with PKC inhibitor and exposed to 25(OH)D3 demonstrated no changes in 45Ca levels, whereas inhibition of PKA induced decreased 45Ca levels after 10 min of incubation. In equivalent time course studies of membrane trafficking using confocal microscopy, potential vectorial transport initiated by each hormone was analyzed with agonist alone or in the presence of PKC and PKA inhibitors. In addition 1,25(OH)2D3 was tested in the presence of Ab099 against its putative membrane receptor. Visualization of these experiments using the endocytotic marker dye, FM 1-43, demonstrated that hormone-mediated membrane trafficking is rapid enough to contribute to ion transport. These results also suggest that vectorial vesicular transport mechanisms were involved to some extent in response to each hormone. Moreover, the pattern for membrane trafficking was different for each agonist. These combined results indicate that adherent chick enterocytes demonstrate hormone-mediated uptake that occurs more rapidly than cells in suspension or in perfusion studies. This research supports previous studies that identify 25(OH)D3 as an active vitamin D metabolite. The PKA signal transduction pathway is a possible mechanism for PTH- and 25(OH)D3-mediated increases in 45Ca. In addition, a central role for the basal lateral membrane receptor protein, 1,25(OH)2D3MARRS-bp, in 1,25(OH)2D3-mediated 32P uptake is supported. Confocal imaging suggests that the transport mechanism for phosphate or calcium ions in the presence of these hormones involves vesicular carriers.
32

The Effect of Feeding Fluoride on Some Enzymes of Bovine Tissues

Sitachitt, Prasertsri 01 May 1962 (has links)
Fluorides are usually found in nature as constituents of soils, water, and the tissues of animals. Fluorite or fluorspar (CaF2), cryolite (Na3AlF6), apatite (3 Ca3 (PO4)2 CaF2) and sedimentary phosphate rocks are among the principle minerals containing fluorides found in nature. Traces of fluorides also occur in domestic water supplies in nature and also by induction in vegetation and animal feeds. From 0.5 ppm to 1.5 ppm of fluorides in drinking water is the range found to be beneficial in reducing the incidence of tooth decay in man. In animals, receiving abnormally elevated intakes of fluorides for a relatively short time or from sustained ingestion of small quantities over long periods, interference with normal life processes with resultant impaired performance or utility has been reported In industrial areas, fluorine as fluorides are present in varying amounts in the atmosphere. It is liberated by industrial processes which make use of high temperatures in the treatment of materials containing fluorine, either as a natural impurity or added as fluorspar for fluxing processes. The burning of coal by homes and industries liberates small quantities of fluorides into the atmosphere also. Residues of fluoride have been found on vegetation from these sources. Chronic fluorine poisoning (fluorosis) in animals may result from prolonged ingestion of fluorides. The symptoms of fluorosis depend on the level of intake, form of fluoride, duration of intake, age and nutritional status of the animals and their individual susceptibility.
33

The Effects of Wort Oxygenation Scenarios on Fermentation Performance, Volatile Flavor Compound Development, and Flavor Stability in High Gravity Brewing

Jabson, Ben 01 March 2021 (has links) (PDF)
High gravity (HG) brewing has become the most used strategy for maximizing fermenter productivity in commercial brewing. While HG brewing has many benefits, the additional stress placed on the yeast due to the higher concentration of fermentable sugars in the wort can negatively impact fermentation performance and flavor compound formation. A proper dissolved oxygen (DO) level is vital to guarantee adequate yeast performance during HG fermentations. Dissolved oxygen is vital to yeast viability throughout the fermentation process, as yeast requires oxygen to synthesize vital cell membrane components needed for continued anaerobic growth and cell division. Previous research has demonstrated the importance of DO in wort for regular gravity fermentation and flavor compound production. However, the impact of dissolved oxygen during HG brewing on fermentation performance and how this will impact the production of flavor compounds have not been fully researched. The objectives of this research were to analyze the impact of wort aeration timing and concentration on fermentation performance, flavor stability, and the formation of volatile flavor compounds, determined using gas chromatography. Gas chromatography analysis was modeled after the ASBC Method Beer-48. Flavor stability and staling was analyzed during aging under normal and accelerated conditions utilizing TBA analysis. Pre-pitch oxygen treatments at levels greater than 8 ppm dissolved oxygen significantly increased attenuation when compared to the unoxygenated controls. Post-pitch oxygenation significantly increased attenuation, with DO treatments at levels of 8 ppm showed the most significant decrease in wort specific gravity. Aldehyde, ester, and higher alcohol production were all significantly affected by DO concentration. Aldehyde production decreased with increased DO concentration. Ester production increased from 0 to 8 ppm DO treatment and decreased at DO treatments greater than 8 ppm. Higher alcohol production increased from 0 to 10 ppm and decreased with DO treatments greater than 10 ppm. Greater concentrations v of DO resulted in greater TBA index values after normal and accelerated aging, with accelerated aging producing greater TBA index values than normal aging.
34

A Study of methods of Determining the Rate of Acid Hydrolysis of Wheat Gluten

Henrickson, Angus V. 01 January 1936 (has links) (PDF)
Because of the nutritious value of sodium glutamate and its meat-Like flavor, won 18 very pleasing to most people, and hence Its demand if it were properly promoted, and because of the abundance of protein in accessible form for its manufacture, it is only reasonable to assume that if too optimum continuous of protein hydrolysis were found, tho manufacturing metnous could be made a.highly successful enterprise.
35

The Effects of Cofermentation of Cider and Apple Pomace on Cider Attributes

Affonso, Abigail D 01 June 2022 (has links) (PDF)
Phenolics are critical to the sensory attributes and health benefits of hard cider due to their contribution to the flavor, mouthfeel, and antioxidant activity. With the increase in demand for cider, the use of dessert apple varieties has become more common leaving ciders lacking in phenolics. However, a promising method to increase their phenolic content is through maceration with apple pomace. This study evaluated the effect maceration with apple pomace during cider fermentation on the extraction of phenolic compounds, as well as its effect on the sensory properties of the final product. For this study, ciders were fermented with 0% (control), 20%, 35%, and 50% of the average pomace created during production of the apple must. After fermentation, the ciders were analyzed for acid content, total phenolic content (TPC), alcohol by volume (ABV), color, volatile profile, and sensory properties. The ciders fermented with apple pomace went through malolactic fermentation. During the maceration phenolics were extracted which resulted in an increase in phenolic content in cider. Compared to the control, the treatment ciders were also seen to have higher ABV and TPC, lower acidity, and a different aromatic profile: decreased acetaldehyde and increased ethyl acetate, isoamyl alcohol, and phenylethyl alcohol. The color measurements suggests that treatment ciders were lighter, with a higher red and yellow color compared to the control cider. The sensory analysis revealed the treatment ciders were perceived as less acidic and astringent, but more bitter than the controls. This study shows the addition of apple pomace in its native state increases total phenolic content and could be favorable to produce well rounded ciders. This study shows maceration is a promising technique for increasing phenolic content in ciders.
36

Effects of Different Forms of Vitamin C on Wheat Starch Properties

Adrianna Maria Pilch (13955949) 13 October 2022 (has links)
<p> The research in this thesis investigated the effects of different vitamin C forms [ascorbic acid (Asc), sodium ascorbate, and calcium ascorbate] on gelatinization, pasting, and short-term retrogradation of wheat starch. Vitamin C is the third most supplemented nutrient in the U.S. and necessary for prevention or treatment of many illnesses. Asc is also used in food products as an acidulant that decreases microbial growth and extends shelf-life, flavoring agent that promotes sour taste, and bread improver that increases gluten development and dough strength in wheat doughs. Ascorbate salts are used as vitamin C sources when a sour taste or pH decrease is undesirable. The gelatinization temperature (Tgel) of wheat starch in solutions of the vitamin C forms and related acids and salts at 0.5, 1.0, and 1.5 M concentrations (or equivalent) was measured using a differential scanning calorimeter and, compared to starch in water, was increased by all the salt solutions and decreased only by Asc. Calcium ascorbate increased Tgel more than the other salts due to hydrogen bonds between ascorbate and starch and strong hydration by water of Ca2+ that stabilized the starch-water structure and inhibited gelatinization. Asc decreased starch Tgel while similarly acidic solutions did not because Asc caused more extensive starch hydrolysis, which promoted granule swelling and amylose leaching. The paste viscosity values of wheat starch in solution were measured with a rapid visco analyzer and, compared to starch in water, were increased by all salt solutions except NaCl and increased by all acidic solutions until breakdown, then decreased. Ascorbate salts increased paste viscosities significantly more than chloride salts due to the stabilization effect of ascorbate hydrogen bonds that increased the amount of larger starch structures, which increased the viscosity during pasting and short-term amylose retrogradation. Ascorbate-containing acidic solutions increased starch peak viscosity and decreased trough and final viscosities more than HCl because increased granular swelling and amylose leaching results in a more rapid and greater initial increase in viscosity and subsequent decrease in viscosity when granular breakdown overtakes swelling. The results of this work could be used by food researchers and product developers to supplement or fortify vitamin C in a starch-based food and/or modify the functions of starch within that food.  </p>
37

Reactive Carbonyl Compounds: Their Control and Consequences in Foods

Freund, Michael 09 July 2018 (has links) (PDF)
Polyunsaturated omega-3 fatty acids (n-3 PUFAs) have been suggested to reduce risk for multiple diseases but animal studies on the beneficial effects of n-3 PUFAs are conflicting, possibly due to the presence of toxic lipid oxidation products in the oils used in these studies. In order to provide guidance for future research in n-3 PUFA supplementation, this study researched lipid oxidation and its inhibition in an animal feed system enriched with fish oil. Different storage conditions were tested, and it was found that samples stored at room temperature or above were at significant risk for oxidation with lag phases of propanal formation being 56, 8 and 2 days at 4°C, 23°C and 37°C. More than 65% removal of oxygen was needed to significantly decrease lipid oxidation. Greater than 65% removal of oxygen could be achieved in less than 1 minute of nitrogen flushing. Tocopherols were not strong antioxidants in the animal feed but Trolox was, suggesting that the fish oil enriched rodent feed acts similarly to bulk oil. Both ascorbic acid and ascorbyl palmitate were found to be ineffective, possibly due to their prooxidant activity. In a comparison of propyl gallate (PG), butylhydroxy toluene (BHT), and tert-butylhydroquinone (TBHQ), results were found similar to other low-moisture systems, with PG being prooxidative, BHT improving lag phase, and TBHQ having a significant impact on lag phase. These results suggest that lipid oxidation products can be present at the start of a dietary omega-3 fatty acid study if poor quality oils are used and that oxidation can occur in the feed during storage times common to animal studies. These findings indicate that researchers should use antioxidant strategies to control oxidation in animal feeds to avoid potentially conflicting effects of lipid oxidation products in dietary omega-3 fatty acid studies.
38

Development of Methodology for Rapid Bacterial Detection in Complex Matrices Using SERS

Tucker, Madeline 09 July 2018 (has links) (PDF)
Fresh foods, including meats and produce are the fastest growing market in the supermarket and the class of foods most likely to cause a bacterial foodborne illness. As the rate of consumption of perishable products increases, rapid detection of pathogens within the food supply becomes a critical issue. Current methods used for the detection of bacteria that cause food-borne illnesses are time consuming, expensive and often require selective enrichment. In this study we adapted a separation technique originally developed for PCR to extract bacteria from ground beef using β-cyclodextrin (β-CD) and milk protein coated activated carbon (MP-CAC) as filtration agents. The recovered bacteria were bound to a gold slide via a 3-mercaptophenylboronic acid (3-MPBA) sandwich assay and detected with Surface Enhanced Raman Spectroscopy (SERS). The 3-MPBA sandwich assay used with the separation technique allowed detection of Salmonella enterica Enteritidis (BAA-1045), separated from a ground beef matrix, as low as 1x102 CFU/g. Detection at this level was accomplished in less than 8 hours, significantly faster than plate count or enrichment methods that require multiple days. Previously, SERS has been used to detect bacteria within simple matrices; this is the first study to have utilized SERS bacterial detection in a ground beef.
39

The effect of spices on carboxymethyllyinse levels in biscuits

Dunn, Jennifer January 1900 (has links)
Master of Science / Food Science Institute / J. Scott Smith / Carboxymethyllysine (CML) and other advanced glycation end products (AGEs) have been shown to affect diseases such as diabetes, cancer, and Alzheimer’s by inducing oxidative stress, inflammation, and tissue damage. CML is formed in foods through Maillard browning reactions and through various mechanisms that are affected by time, temperature, pH, water activity, trace metals, and antioxidants. Natural antioxidants can be found in plant and fruit extracts, as well as in spices. The research contained herein is in two parts. The first part includes preliminary work, which examines the percent recovery of CML from various solid phase extraction columns, the analysis of CML in maple syrup, barbeque sauce, honey, and infant formula. The data show that solid phase extraction with a C-18 cartridge produced the highest percent recovery when using a CML standard at 100 ppb, with a recovery of 69%. Furthermore, the analysis of the syrups and sauces is inconclusive, due to the very low levels of CML detected in the infant formula, and the complications due to the high levels of reducing sugars. The second part of the research examines the effect that cinnamon, onion, garlic, black pepper, and rosemary have on CML levels in biscuits. The data show that all of the spices inhibit the formation of CML, at each of the 0.5%, 1%, and 2% levels used in the experiment, by a minimum of 3% in 2% onion samples and a maximum of 79% in 0.5% cinnamon samples when looking at the cumulative data. When looking subsets of the data, the CML inhibition was a minimum of 59% in 2% onion samples and a maximum of 74% in 0.5% cinnamon samples. Other trends can be observed in the chroma values in the CML color data, which suggest that chroma values decrease as the spice level increases, but these are not statistically significant. They may be due to color from the spices themselves, or to the chemical changes in the Maillard reaction.
40

Análise térmica e ensaios de colagem de adesivos \"hot melt\" para embalagens de congelados / Thermal analysis and hot melt adhesives for frozen packaging

Araújo Junior, João de 16 December 2002 (has links)
Os adesivos \"hot melt\" são blendas poliméricas aplicadas no estado fundido para fechamento de embalagens. Neste trabalho, procedemos à análise térmica e ensaios de adesão de alguns adesivos \"hot melt\" desenvolvidos para embalagens de alimentos congelados, buscando as formulações de melhor estabilidade térmica na temperatura de aplicação (180 ºC) e desempenho de colagem na temperatura do freezer. Estes adesivos contêm diferentes matérias-primas, tais como copolímeros de etileno e acetato de vinila (EVA), resinas promotoras de adesão e ceras. As técnicas utilizadas para as análises térmicas foram a termogravimetria (TG) e a calorimetria exploratória diferencial (DSC). Para avaliação das colagens, foi utilizado um dinamômetro. Das análises de calorimetria exploratória diferencial foi possível concluir que a miscibilidade da resina nas blendas estudadas pode ser monitorada pelo maior ou menor deslocamento da Tg do EVA. Os ensaios mecânicos de colagem a -18 ºC mostraram que a miscibilidade destes sistemas, que tem impacto direto sobre sua Tg, é responsável pela melhor ou pior performance adesiva. A blenda contendo uma resina terpênica-fenólica (TP 2040), altamente imiscível, apresentou o melhor resultado de tração de descascamento a -18 ºC. Já a blenda contendo um éster de pentaeritritol (RE 100 L), de alta miscibilidade, foi a que teve resultado menos satisfatório neste teste. A calorimetria exploratória diferencial, assim como a termogravimetria, se mostraram importantes ferramentas para avaliação da estabilidade térmica dos adesivos. A blenda contendo EVA, um oligômero de ciclopenteno e uma cera sintética foi a que apresentou maior estabilidade térmica. / The \"hot melt\" adhesives are polymeric blends applied in the molten state for case and carton sealing. In the present work, we carried out the thermal analysis and bonding evaluations of some hot melt adhesives for freezer grade carton sealing. These adhesives contained different raw materials, such as ethylene / vinyl acetate copolymers (EVA), tackfying resins and waxes, and we pursued the formulations with the best pot life in the application temperature (180 ºC) and bonding performance in the blast freezer temperature (-18 ºC). The techniques used for the thermal analysis were the thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC). For the bonding assessments, a dynamometer was used. From the DSC curves it was possible to figure out that the miscibility of the resin in the blends can be monitored by the EVA\'s Tg displacement. The bonding force analysis at -18 ºC showed that the miscibility of these systems is responsible for the adhesive performance. The blend containing a terpene-phenolic resin (TP 2040), highly imiscible, had the best result of peeling resistance whereas the blend containing a pentaerythritol ester of rosin (RE 100 L), a very miscible resin, was the one with the less satisfactory result. The thermogravimetry and the differential scanning calorimetry were important tools for the evaluation of the thermal stability of the adhesives. The blend containing an oligomer of cyclopentene presented the best thermal stability.

Page generated in 0.0862 seconds