• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 10
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 34
  • 24
  • 24
  • 22
  • 22
  • 21
  • 18
  • 17
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cost Optimization Of Concentric Loaded Rectangular Combined Footings Using Different Matlab Solvers

Amro, Muath K. 17 September 2020 (has links)
No description available.
22

Experimental Testing of Shallow Embedded Connections Between Steel Columns and Concrete Footings

Barnwell, Nicholas Valgardson 01 March 2015 (has links) (PDF)
Shallow embedded column connections are widely used for columns resisting gravity loads in current design methods. These connections are usually considered “pinned” for structural analysis. In reality these connections fall in between a fixed and a pinned condition. Although methods exist to estimate the stiffness and strength of exposed columns or embedded columns under lateral loads, little research has been done to determine the strength of shallow embedded columns. An experimental study was carried out to investigate the strength of these connections. A total of 12 specimens with varying orientation, embedment depth, and column size were loaded laterally until failure or significant loss in strength. The results showed that shallow embedded connections are 86%-144% stronger in yielding and 32%-64% stronger in ultimate strength than current design methods would predict. This strength comes from a combination of the embedment depth and the resistance from the base plate and anchor rods. A model is proposed to explain the strength of the specimens and to conservatively estimate the strength of specimens with different variables. The specimens also exhibited stiffness ranging from 50%-75% of what would be expected from fully embedded columns.
23

Analysis of strip footings on fibre reinforced slopes with the aid of Particle Image Velocimetry (PIV)

Mirzababaei, M., Mohamed, Mostafa H.A., Miraftab, M. 26 October 2016 (has links)
Yes / This paper provides results of a comprehensive investigation into the use of waste carpet fibres for reinforcement of clay soil slopes. The interaction between laboratory scale model slopes made of fibre reinforced clay soil and surface strip footing load was examined. Results for the influence of two variables namely fibre content and distance between the footing edge and the crest of the slope are presented and discussed. Particle Image Velocimetry (PIV) technique was employed to study the deformation of the slope under the surface loading. The front side of the tank was made of a thick Perspex glass to facilitate taking accurate images during the loading stage. To study the stress induced in the slope under footing pressure, excess pore-water pressure and total stress increase were measured at predetermined locations within the slope. The results showed that fibre reinforcement increased the bearing resistance of the model slope significantly. For instance, inclusion of 5% waste carpet fibre increased the bearing pressure by 145% at 10% settlement ratio. / The post-print of this article will be released for public view when the version of record has been published by ASCE.
24

The Effect Of Interference Of Strip Foundations And Anchors On Their Ultimate Bearing Capacity And Elastic Settlement

Bhoi, Manas Kumar 07 1900 (has links)
Due to close proximity of different civil engineering structures, the ultimate bearing capacity and failure pattern of adjoining footings/anchors are often influenced by their mutual interference. The present thesis is an attempt to examine the interference effects on the ultimate failure loads and the elastic settlements for a group of closely spaced strip footings and anchors. In this thesis, a new experimental setup has been proposed to examine the response of interfering strip footings and strip anchors subjected to vertical loads but without having any eccentricity. Through out the investigation, it has been assumed that the magnitudes of loads on all the footings/anchors at any stage of settlement remain exactly the same. Unlike the existing experimental works of the previous researchers reported in literature, in the proposed experimental setup, there is no need to use more than one footing/anchor. As a result a much smaller size of the tank, in which the soil sample needs to be prepared, is required. In the proposed setup, it has been attempted to satisfy the boundary conditions existing along the vertical planes of symmetry midway between any two adjoining footings/anchors. To satisfy the governing boundary conditions, along the planes of symmetry, the interface friction angle is kept as small as possible, with the employment of a very smooth high strength glass sheet, and the associated horizontal displacements are made equal to zero. For two interfering footings/anchors case, only single plane of symmetry on one side of the footing needs to be modeled. On the other hand, for an infinite number of multiple footings/anchors, two vertical planes of symmetry on both the sides of the footing need to be simulated in the experiments. The proposed experimental setup is noted to yield reasonably acceptable results both for the cases of interfering footings and interfering anchors. The magnitudes of ultimate failure loads for the interfering footings/anchors are expressed in terms of the variation of the efficiency factor ( ξγ) with respect to changes in the clear spacing(s) between the footings/anchors; wherein, an efficiency factor is defined as the ratio of the magnitude of the failure load for an intervening strip footing/anchor of a given width to that of an isolated strip footing/anchor having exactly the same width. From the experiments, the values of the efficiency factors are obtained for a group of two and an infinite number of multiple strip footings/anchors. The effect of two different widths of the footing/anchor on the magnitudes of the failure load is also studied. It is noted that for a group of two and infinite number of multiple footings, the magnitude of the ultimate failure load for an interfering footing becomes always greater than that for a single isolated footing. For the case of two footings, the value of ξγ becomes maximum corresponding to a certain critical s/B between two footings. At a given spacing, the value of ξγ is found to increase further with an increase in the value of φ. It is observed that, for a group of an infinite number of equally spaced multiple strip footings, the magnitude of ξγ increases continuously with a decrease in s/B; when the clear spacing between the footings approaches zero, the magnitude of ξγ tends to become infinity. The value of ξγ associated with a given s/B for the multiple footings case is found to become always greater than that for a two footing case. The effect of s/B on ξγ is found similar to that reported in theories in a qualitative sense. The value of ξγ at a given s/B associated for B = 4 cm both for two and multiple footings is found to become smaller as compared to that with B = 7 cm. In contrast to a group of interfering footings under compression, the magnitude of ξγ in the case of both two and multiple interfering anchors decreases continuously with a reduction in the value of s/B. For given values of s/B and embedment ratio ( λ = d/B ), the values of ξγ for the case of multiple anchors are found to be always lower than those for the case of two anchors; d = depth of the anchor. In comparison with the available theoretical values from the literature, the values of ξγ are found to be a little lower especially for smaller values of s/B. The comparison of the present experimental data with that reported from literature reveals that the interference of strip anchors will have relatively more reduction in the uplift resistance on account of interference as compared to a group of square and circular anchors; the present experimental data provides relatively lower values of ξγ as compared to the available experimental data (for square and circular footings). The value of s/B beyond which the response of anchors becomes that of an isolated anchor increases continuously with an increase in the value of λ. The magnitude of ξγ for given values of s/B and λ associated for B = 4 cm is found to become slightly greater as compared to that with B = 7 cm. Both for the cases of interfering footings and anchors, the ratio of the average ultimate pressure with the employment of the rough central plane (glass sheet glued with a sand paper) to that with the smooth central plane, is found to increase with (i) a decrease in the value of s/B, and (ii) an increase in the value of φ. The finite element analysis, based on a linear elastic soil-constitutive model, has also been performed for interfering footings and anchors to find the effect of interference on elastic settlements. The computations have revealed that for both the footings and anchors, a decrease in the spacing between the footings leads to a continuous increase in the magnitudes of the settlements. The increase in the settlement due to the interference becomes quite substantial for an infinite number of footings/anchors case as compared to two footings/anchors case. The effect of the Poisson’s ratio on the results is found to be practically insignificant.
25

Analyses Of Two-Layer Soil Systems Beneath Rigid Footings

Vinod, P 07 1900 (has links) (PDF)
No description available.
26

Rotational Strength and Stiffness of Shallowly Embedded Base Connections in Steel Moment Frames

Hanks, Kevin N. 01 October 2016 (has links)
Shallowly embedded column base connections with unreinforced block out concrete are a common method of connecting steel columns to their foundation. There has been little research done to accurately quantify the effects of this block out concrete on the connection strength and rigidity, and therefore there is nothing to aid the practicing engineer in accounting for this in structural analysis. Due to this lack of understanding, engineers have typically ignored the effects of shallow block out concrete in their analysis, presumably leading to a conservative design. Recent research has attempted to fill this gap in understanding. Several methods have been proposed that seek to quantify the effects of shallow block out concrete on a column base connection. Barnwell proposed a model that predicts the strength of a connection. Both Jones and Tryon used numerical modeling to predict the rotational stiffness of the connection. An experimental study was carried out to investigate the validity of these proposed models. A total of 8 test specimens were created at 2/3 scale with varying column sizes, connection details, and embedment depths. The columns were loaded laterally and cyclically at increasing displacements until the connection failed. The results show that the strength model proposed by Barnwell is reasonable and appropriate, and when applied to this series of physical tests produce predictions that have an observed/predicted ratio of between 0.95 to 1.39. The results also show that methods for estimating the rotational stiffness of the connection at the top of the block out concrete, as proposed by Jones and Tryon also produce reasonable values that had observed/predicted ratios of between 0.93 to 1.47. An alternative model for determining a design value for the rotational stiffness of a shallowly embedded column base plate is also proposed. When the embedment depth to column depth ratio is greater than 1.22, the connection is sufficiently rigid and at small deflections (less than 1% story drift) may be accurately modelled with infinite rotational stiffness (a "fixed" connection) at the base of the column.
27

Solutions For Plane Strain And Axisymmetric Geomechanics Problems With Lower Bound Finite Elements Limit Analysis

Khatri, Vishwas N 03 1900 (has links)
The present thesis illustrates the application of the lower bound limit analysis in combination with finite elements and linear programming for obtaining the numerical solutions for various plane strain and axisymmetric stability problems in geomechanics. For the different plane strain problems dealt in the thesis, the existing formulation from the literature with suitable amendments, wherever required, was used. On the other hand for various axisymmetric problems, the available plane strain methodology was modified and a new formulation is proposed. In comparison to the plane strain analysis, the proposed axisymmetric formulation requires only three additional linear constraints to incorporate the presence of the hoop/circumferential stress (σθ). Several axisymmetric geotechnical stability problems are solved successfully to demonstrate the applicability of the proposed formulation. In the entire thesis, three noded triangular elements are used for carrying out the analysis. The nodal stresses are treated as basic unknowns and the stress discontinuities are employed along the interfaces of all the elements. To ensure that the finite element formulation leads to a linear programming problem, the Mohr-Coulomb yield surface is approximated by a polygon inscribed to the parent yield surface. For solving different problems, computer programs are developed in ‘MATLAB’. The variation of the bearing capacity factor Nγ with footing-soil interface roughness angle δ is obtained for different soil friction angles. The magnitude of Nγ is found to increase extensively with an increase in δ. With respect to variation in δ, the obtained values of Nγ were found to be generally smaller than the results available in literature. The effect of the footing width on the magnitude of Nγ has been examined for both smooth and rough strip footings. An iterative computational procedure is introduced to account for the dependency of φ on the mean normal stress ( σm). Two well defined φ- σm curves from literature, associated with two different relative densities, are being chosen for performing the computational analysis. The magnitude of Nγ is obtained for different footing widths, covering almost the entire range of model and field footing sizes. For a value of the footing width greater than approximately 0.2 m and 0.4 m, for a rough and smooth footing, respectively, the magnitude of Nγ varies almost linearly on a log-log scale. The bearing capacity factors Nc, Nq and Nγ are computed for a circular footing both with smooth and rough footing interface. The bearing capacity factors for a rough footing are found to be consistently greater than those with a smooth interface, especially with grater values of soil friction angle (φ). An encouraging comparison between the obtained results and those available from the literature is noted. Bearing capacity factor Nc for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (φ = 0) condition. The variation of Nc with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed in the stiff clay stratum overlaid by a soft clay layer. It has been noticed that the magnitude of Nc reaches almost a constant value for embedment ratio approximately greater than unity. The bearing capacity factor Nγ has been computed for a rough conical footing placed over horizontal ground surface. The variation of Nγ with the cone apex (interior) angle (β), in a range of 30º - 180º, is obtained for different values of friction angle ( φ). For φ< 30º, the magnitude of Nγ is found to decrease continuously with an increase in β from 30º to 180º. On the other hand, for φ > 30º , the minimum magnitude of Nγ is found to occur generally between β = 120 and β = 150º. In all the cases, it has been noticed that the magnitude of Nγ becomes maximum for β = 30o. The vertical uplift resistance of circular plate anchors, embedded horizontally in a clayey stratum whose cohesion increases linearly with depth, has been obtained under undrained ( φ = 0) condition. The variation of the uplift factor (Fc) with changes in the embedment ratio (H/B) has been computed for several rates of the increase of soil cohesion with depth. It has been noted that in all the cases, the magnitude of Fc increases continuously with H/B up to a certain value of Hcr/B beyond which the uplift factor becomes essentially constant. The results obtained from the analysis are noted to compare quite well with those published in literature. From the investigation reported in this thesis, it is expected that the proposed axisymmetric formulation will be quite useful for solving various axisymmetric geotechnical stability problem in a rapid manner. The available plane strain formulation has also been found to yield quite satisfactory solutions even for a problem where the soil friction angle depends on the state of stress at a point.
28

Lower Bound Limit Analysis Applications For Solving Planar Stability Problems In Geomechanics

Bhattacharya, Paramita 09 1900 (has links) (PDF)
Limit analysis based upon the theory of plasticity is one of the very useful numerical techniques to determine the failure loads of different civil and mechanical engineering structures for a material following an associated flow rule. The limiting values of the collapse loads, namely, lower and upper bounds, can be bracketed quite accurately with the application of the lower and upper bound theorems of the limit analysis. With the advancement of the finite elements and different robust optimization techniques, the numerical limit analysis approach in association with finite elements is becoming very popular to assess the stability of various complicated structures. Although two different optimization methods, namely, linear programming and nonlinear programming, have been both successfully implemented by various researchers for solving different stability problems in geomechanics, the linear programming method is employed in the present thesis due to its inherent advantage in implementation and ease in achieving the convergence. The objectives of the present thesis are (i) to improve upon the existing lower bound limit analysis method, in combination with finite elements and linear programming, with an intention of reducing the computational time and the associated memory requirement, and (ii) to apply the existing lower bound finite element limit analysis to various important planar stability problems in geotechnical engineering. With reference to the first objective of the thesis, two new methods have been introduced in this thesis to improve upon the existing computational procedure while solving the geomechanics stability problem with the usage of the limit analysis, finite elements and linear programming. In the first method, namely, the method-I, the order of the yield polygon within the chosen domain is varied, based on the proximity of the stress state to the yield, such that a higher order polygon needs not to be used everywhere in the problem domain. In the second method, the method-II, it has been intended to use only a few selected sides, but not all, of the higher order yield polygon which are being used to linearize the Mohr-Coulomb yield function. The proposed two methods have been applied to compute the ultimate bearing capacity of smooth as well as rough strip footings for various soil frictional angles. It has been noticed that both the proposed new methods reduce the CPU time and the total number of inequality constraints required as compared to the existing lower bound linear programming method used in literature. With reference to the second objective, a few important planar stability problems in geomechanics associated with interference of footings and vertical anchors have been solved in the present thesis. Footings are essentially used to transfer the compressive loads of the super structures to underlying soil media. On the other hand, vertical anchors are used for generating passive supports to retaining walls, sheet piles and bulkheads. A large number of research investigations have been reported in literature to compute the collapse load for a single isolated strip footing and a single vertical anchor. It is a common practice to estimate the bearing capacity of footings or pullout capacity of anchors without considering the effect of interference. There are, however, clear evidences from the available literature that (i) the ultimate bearing capacity of footings, and (ii) the ultimate pullout capacity of anchors, are significantly affected by their interference effect. Based on different available methods, the interference of footings, in a group of two footings as well as an infinite number of multiple footings, has been examined by different researchers in order to compute the ultimate bearing capacity considering the group effect. However, there is no research study to find the ultimate bearing capacity of interfering footings with the usage of the lower bound limit analysis. In the present thesis, the ultimate bearing capacity of two and an infinite number of multiple strip footings placed on sandy soil with horizontal ground surface, has been determined. The analysis has been performed for smooth as well as rough footings. The failure loads for interfering footings are found to be always greater than the single isolated footing. The effect of the footings' interference is expressed in terms of an efficiency factor ( ξγ); where, ξγ is defined as the ratio of the magnitude of failure load for a footing of width B in presence of the other footing to the magnitude of failure load of an isolated strip footing having the same width. The effect of the interference on the failure load (i) for rough footings becomes always greater than smooth footings, (ii) increases with an increase in soil frictional angle φ, and (iii) becomes almost negligible beyond the spacing, S > 3B. It is observed that the failure load for a footing in a group of an infinite number of multiple strip footings becomes always greater than that for two interfering footings. Attempts have been made in this thesis to investigate the group effect of two vertical anchors on their horizontal pullout resistance (PuT). The anchors are considered to be embedded at a certain clear spacing (S) along the same vertical plane. The group effect has been studied separately for anchors embedded in (i) sandy soil, and (ii) undrained clay, respectively. For anchors embedded in clays, an increase of soil cohesion with depth, in a linear fashion, has also been taken into consideration. The magnitude of PuT has been obtained in terms of a group efficiency factor, ηγ for sand and ηc for clay, with respect to the failure load for a single isolated vertical plate with the same H/B. The pullout capacity of a group of two anchors either in sand or in undrained clay becomes quite extensive as compared to a single isolated anchor. The magnitudes of ηγ and ηc become maximum corresponding to a certain critical value of S/B, which has been found to lie generally between 0.5 and 1. The value of ηγ for a given S/B has been found to become larger for greater values of H/B, φ, and δ. For greater values of H/B, the group effect becomes more significant in contributing the pullout resistance. The horizontal pullout capacity of a single isolated vertical anchor embedded in sand in the presence of pseudo static horizontal earthquake body forces has also been determined by using the lower bound finite element limit analysis. The variation of the pullout factor Fγ with changes in the embedment ratio of the smooth and rough anchor plates for different values of horizontal earthquake acceleration coefficient ( αh) has been investigated. The analysis clearly reveals that the pullout resistance decreases quite significantly with an increase in the magnitude of the earthquake acceleration coefficient. For the various problems selected in the present thesis, the failure patterns have also been exclusively drawn in order to understand the development of the plastic zones within the chosen domain for solving a given problem. The results obtained from the analysis, for the various problems taken up in this thesis, have been thoroughly compared with those reported in literature.
29

Polyfunkční dům / Multifunctional Building

Kozáková, Martina January 2016 (has links)
The diploma thesis is based on design of a multifunctional building in Lazany. The object is situated in a build-up area. There is the patisserie and the grocery on the first floor. There is six flats on the second and the third floor. The building has three floors without a cellar. There is a parking for customers and tenantry of building. The object is based on the footings of plaint concrete and it is used the building system POROTHERM. The ceilings are made of ceiling panels SPIROLL and the roof is flat.
30

Mateřská škola Barevný svět / Barevný svět kindergarten

Žižková, Martina January 2017 (has links)
The objective of the diploma thesis is to prepare a study of a kindergarten. The kindergarten is designed for 72 children and is located on the lot n. 899/2 in Brno, district Zebetin. The house is a single storey, free-standing with no basement. The entrance and access road is located on the north side of the property. The adjacent terrain is gently sloping. The supporting construction is designed from the Porotherm system. The building is covered with a flat roof. The operation consists of three departments, facilities for teachers, communication facilities and technical background.

Page generated in 0.0653 seconds